Metamath Proof Explorer


Theorem rmfsupp

Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypothesis rmsuppfi.r R = Base M
Assertion rmfsupp M Ring V X C R A R V finSupp 0 M A finSupp 0 M v V C M A v

Proof

Step Hyp Ref Expression
1 rmsuppfi.r R = Base M
2 funmpt Fun v V C M A v
3 2 a1i M Ring V X C R A R V finSupp 0 M A Fun v V C M A v
4 id finSupp 0 M A finSupp 0 M A
5 4 fsuppimpd finSupp 0 M A A supp 0 M Fin
6 1 rmsuppfi M Ring V X C R A R V A supp 0 M Fin v V C M A v supp 0 M Fin
7 5 6 syl3an3 M Ring V X C R A R V finSupp 0 M A v V C M A v supp 0 M Fin
8 mptexg V X v V C M A v V
9 8 3ad2ant2 M Ring V X C R v V C M A v V
10 9 3ad2ant1 M Ring V X C R A R V finSupp 0 M A v V C M A v V
11 fvex 0 M V
12 isfsupp v V C M A v V 0 M V finSupp 0 M v V C M A v Fun v V C M A v v V C M A v supp 0 M Fin
13 10 11 12 sylancl M Ring V X C R A R V finSupp 0 M A finSupp 0 M v V C M A v Fun v V C M A v v V C M A v supp 0 M Fin
14 3 7 13 mpbir2and M Ring V X C R A R V finSupp 0 M A finSupp 0 M v V C M A v