Metamath Proof Explorer


Theorem rmsuppfi

Description: The support of a mapping of a multiplication of a constant with a function into a ring is finite if the support of the function is finite. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppfi.r R = Base M
Assertion rmsuppfi M Ring V X C R A R V A supp 0 M Fin v V C M A v supp 0 M Fin

Proof

Step Hyp Ref Expression
1 rmsuppfi.r R = Base M
2 simp3 M Ring V X C R A R V A supp 0 M Fin A supp 0 M Fin
3 1 rmsuppss M Ring V X C R A R V v V C M A v supp 0 M A supp 0 M
4 3 3adant3 M Ring V X C R A R V A supp 0 M Fin v V C M A v supp 0 M A supp 0 M
5 ssfi A supp 0 M Fin v V C M A v supp 0 M A supp 0 M v V C M A v supp 0 M Fin
6 2 4 5 syl2anc M Ring V X C R A R V A supp 0 M Fin v V C M A v supp 0 M Fin