Metamath Proof Explorer


Theorem rmsuppfi

Description: The support of a mapping of a multiplication of a constant with a function into a ring is finite if the support of the function is finite. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppfi.r 𝑅 = ( Base ‘ 𝑀 )
Assertion rmsuppfi ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ∧ ( 𝐴 supp ( 0g𝑀 ) ) ∈ Fin ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 rmsuppfi.r 𝑅 = ( Base ‘ 𝑀 )
2 simp3 ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ∧ ( 𝐴 supp ( 0g𝑀 ) ) ∈ Fin ) → ( 𝐴 supp ( 0g𝑀 ) ) ∈ Fin )
3 1 rmsuppss ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ⊆ ( 𝐴 supp ( 0g𝑀 ) ) )
4 3 3adant3 ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ∧ ( 𝐴 supp ( 0g𝑀 ) ) ∈ Fin ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ⊆ ( 𝐴 supp ( 0g𝑀 ) ) )
5 ssfi ( ( ( 𝐴 supp ( 0g𝑀 ) ) ∈ Fin ∧ ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ⊆ ( 𝐴 supp ( 0g𝑀 ) ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ∈ Fin )
6 2 4 5 syl2anc ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ∧ ( 𝐴 supp ( 0g𝑀 ) ) ∈ Fin ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ∈ Fin )