Step |
Hyp |
Ref |
Expression |
1 |
|
rmsuppss.r |
⊢ 𝑅 = ( Base ‘ 𝑀 ) |
2 |
|
oveq2 |
⊢ ( ( 𝐴 ‘ 𝑤 ) = ( 0g ‘ 𝑀 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( 𝐶 ( .r ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
3 |
|
simpll1 |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → 𝑀 ∈ Ring ) |
4 |
|
simpll3 |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → 𝐶 ∈ 𝑅 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑀 ) = ( .r ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
7 |
1 5 6
|
ringrz |
⊢ ( ( 𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
8 |
3 4 7
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑀 ) ) |
9 |
2 8
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) ∧ ( 𝐴 ‘ 𝑤 ) = ( 0g ‘ 𝑀 ) ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( 0g ‘ 𝑀 ) ) |
10 |
9
|
ex |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑤 ) = ( 0g ‘ 𝑀 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) = ( 0g ‘ 𝑀 ) ) ) |
11 |
10
|
necon3d |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) → ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) ) ) |
12 |
11
|
ss2rabdv |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → { 𝑤 ∈ 𝑉 ∣ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑤 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } ) |
13 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐴 : 𝑉 ⟶ 𝑅 ) |
14 |
13
|
fdmd |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → dom 𝐴 = 𝑉 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → dom 𝐴 = 𝑉 ) |
16 |
|
rabeq |
⊢ ( dom 𝐴 = 𝑉 → { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } = { 𝑤 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } = { 𝑤 ∈ 𝑉 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } ) |
18 |
12 17
|
sseqtrrd |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → { 𝑤 ∈ 𝑉 ∣ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) } ⊆ { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } ) |
19 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝐴 ‘ 𝑣 ) = ( 𝐴 ‘ 𝑤 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑣 = 𝑤 → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) = ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ) |
21 |
20
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) ) = ( 𝑤 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ) |
22 |
|
simpl2 |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝑉 ∈ 𝑋 ) |
23 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 0g ‘ 𝑀 ) ∈ V ) |
24 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ∈ V ) |
25 |
21 22 23 24
|
mptsuppd |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) ) supp ( 0g ‘ 𝑀 ) ) = { 𝑤 ∈ 𝑉 ∣ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑤 ) ) ≠ ( 0g ‘ 𝑀 ) } ) |
26 |
|
elmapfun |
⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → Fun 𝐴 ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → Fun 𝐴 ) |
28 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) |
29 |
|
suppval1 |
⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ ( 0g ‘ 𝑀 ) ∈ V ) → ( 𝐴 supp ( 0g ‘ 𝑀 ) ) = { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } ) |
30 |
27 28 23 29
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( 𝐴 supp ( 0g ‘ 𝑀 ) ) = { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴 ‘ 𝑤 ) ≠ ( 0g ‘ 𝑀 ) } ) |
31 |
18 25 30
|
3sstr4d |
⊢ ( ( ( 𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅 ) ∧ 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( 𝐶 ( .r ‘ 𝑀 ) ( 𝐴 ‘ 𝑣 ) ) ) supp ( 0g ‘ 𝑀 ) ) ⊆ ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ) |