Metamath Proof Explorer


Theorem rmsuppss

Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypothesis rmsuppss.r 𝑅 = ( Base ‘ 𝑀 )
Assertion rmsuppss ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ⊆ ( 𝐴 supp ( 0g𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 rmsuppss.r 𝑅 = ( Base ‘ 𝑀 )
2 oveq2 ( ( 𝐴𝑤 ) = ( 0g𝑀 ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( 𝐶 ( .r𝑀 ) ( 0g𝑀 ) ) )
3 simpll1 ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → 𝑀 ∈ Ring )
4 simpll3 ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → 𝐶𝑅 )
5 eqid ( .r𝑀 ) = ( .r𝑀 )
6 eqid ( 0g𝑀 ) = ( 0g𝑀 )
7 1 5 6 ringrz ( ( 𝑀 ∈ Ring ∧ 𝐶𝑅 ) → ( 𝐶 ( .r𝑀 ) ( 0g𝑀 ) ) = ( 0g𝑀 ) )
8 3 4 7 syl2anc ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( 𝐶 ( .r𝑀 ) ( 0g𝑀 ) ) = ( 0g𝑀 ) )
9 2 8 sylan9eqr ( ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) ∧ ( 𝐴𝑤 ) = ( 0g𝑀 ) ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( 0g𝑀 ) )
10 9 ex ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( ( 𝐴𝑤 ) = ( 0g𝑀 ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) = ( 0g𝑀 ) ) )
11 10 necon3d ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) → ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) ) )
12 11 ss2rabdv ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → { 𝑤𝑉 ∣ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) } ⊆ { 𝑤𝑉 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } )
13 elmapi ( 𝐴 ∈ ( 𝑅m 𝑉 ) → 𝐴 : 𝑉𝑅 )
14 13 fdmd ( 𝐴 ∈ ( 𝑅m 𝑉 ) → dom 𝐴 = 𝑉 )
15 14 adantl ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → dom 𝐴 = 𝑉 )
16 rabeq ( dom 𝐴 = 𝑉 → { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } = { 𝑤𝑉 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } )
17 15 16 syl ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } = { 𝑤𝑉 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } )
18 12 17 sseqtrrd ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → { 𝑤𝑉 ∣ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) } ⊆ { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } )
19 fveq2 ( 𝑣 = 𝑤 → ( 𝐴𝑣 ) = ( 𝐴𝑤 ) )
20 19 oveq2d ( 𝑣 = 𝑤 → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) = ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) )
21 20 cbvmptv ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) = ( 𝑤𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) )
22 simpl2 ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → 𝑉𝑋 )
23 fvexd ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( 0g𝑀 ) ∈ V )
24 ovexd ( ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) ∧ 𝑤𝑉 ) → ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ∈ V )
25 21 22 23 24 mptsuppd ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) = { 𝑤𝑉 ∣ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑤 ) ) ≠ ( 0g𝑀 ) } )
26 elmapfun ( 𝐴 ∈ ( 𝑅m 𝑉 ) → Fun 𝐴 )
27 26 adantl ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → Fun 𝐴 )
28 simpr ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → 𝐴 ∈ ( 𝑅m 𝑉 ) )
29 suppval1 ( ( Fun 𝐴𝐴 ∈ ( 𝑅m 𝑉 ) ∧ ( 0g𝑀 ) ∈ V ) → ( 𝐴 supp ( 0g𝑀 ) ) = { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } )
30 27 28 23 29 syl3anc ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( 𝐴 supp ( 0g𝑀 ) ) = { 𝑤 ∈ dom 𝐴 ∣ ( 𝐴𝑤 ) ≠ ( 0g𝑀 ) } )
31 18 25 30 3sstr4d ( ( ( 𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅 ) ∧ 𝐴 ∈ ( 𝑅m 𝑉 ) ) → ( ( 𝑣𝑉 ↦ ( 𝐶 ( .r𝑀 ) ( 𝐴𝑣 ) ) ) supp ( 0g𝑀 ) ) ⊆ ( 𝐴 supp ( 0g𝑀 ) ) )