Step |
Hyp |
Ref |
Expression |
1 |
|
lindslinind.r |
|- R = ( Scalar ` M ) |
2 |
|
lindslinind.b |
|- B = ( Base ` R ) |
3 |
|
lindslinind.0 |
|- .0. = ( 0g ` R ) |
4 |
|
lindslinind.z |
|- Z = ( 0g ` M ) |
5 |
|
lindslinind.y |
|- Y = ( ( invg ` R ) ` ( f ` x ) ) |
6 |
|
lindslinind.g |
|- G = ( f |` ( S \ { x } ) ) |
7 |
|
simp3r |
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> f finSupp .0. ) |
8 |
3
|
fvexi |
|- .0. e. _V |
9 |
8
|
a1i |
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> .0. e. _V ) |
10 |
7 9
|
fsuppres |
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> ( f |` ( S \ { x } ) ) finSupp .0. ) |
11 |
6 10
|
eqbrtrid |
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> G finSupp .0. ) |