Metamath Proof Explorer


Theorem lindslinindimp2lem3

Description: Lemma 3 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lindslinind.r
|- R = ( Scalar ` M )
lindslinind.b
|- B = ( Base ` R )
lindslinind.0
|- .0. = ( 0g ` R )
lindslinind.z
|- Z = ( 0g ` M )
lindslinind.y
|- Y = ( ( invg ` R ) ` ( f ` x ) )
lindslinind.g
|- G = ( f |` ( S \ { x } ) )
Assertion lindslinindimp2lem3
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> G finSupp .0. )

Proof

Step Hyp Ref Expression
1 lindslinind.r
 |-  R = ( Scalar ` M )
2 lindslinind.b
 |-  B = ( Base ` R )
3 lindslinind.0
 |-  .0. = ( 0g ` R )
4 lindslinind.z
 |-  Z = ( 0g ` M )
5 lindslinind.y
 |-  Y = ( ( invg ` R ) ` ( f ` x ) )
6 lindslinind.g
 |-  G = ( f |` ( S \ { x } ) )
7 simp3r
 |-  ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> f finSupp .0. )
8 3 fvexi
 |-  .0. e. _V
9 8 a1i
 |-  ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> .0. e. _V )
10 7 9 fsuppres
 |-  ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> ( f |` ( S \ { x } ) ) finSupp .0. )
11 6 10 eqbrtrid
 |-  ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S ) /\ ( f e. ( B ^m S ) /\ f finSupp .0. ) ) -> G finSupp .0. )