| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindslinind.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 2 |
|
lindslinind.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
lindslinind.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
lindslinind.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 5 |
|
lindslinind.y |
⊢ 𝑌 = ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 6 |
|
lindslinind.g |
⊢ 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) ) |
| 7 |
|
simp3r |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 𝑓 finSupp 0 ) |
| 8 |
3
|
fvexi |
⊢ 0 ∈ V |
| 9 |
8
|
a1i |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 0 ∈ V ) |
| 10 |
7 9
|
fsuppres |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) ) finSupp 0 ) |
| 11 |
6 10
|
eqbrtrid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 𝐺 finSupp 0 ) |