Metamath Proof Explorer


Theorem lindslinindimp2lem3

Description: Lemma 3 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lindslinind.r 𝑅 = ( Scalar ‘ 𝑀 )
lindslinind.b 𝐵 = ( Base ‘ 𝑅 )
lindslinind.0 0 = ( 0g𝑅 )
lindslinind.z 𝑍 = ( 0g𝑀 )
lindslinind.y 𝑌 = ( ( invg𝑅 ) ‘ ( 𝑓𝑥 ) )
lindslinind.g 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) )
Assertion lindslinindimp2lem3 ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 𝐺 finSupp 0 )

Proof

Step Hyp Ref Expression
1 lindslinind.r 𝑅 = ( Scalar ‘ 𝑀 )
2 lindslinind.b 𝐵 = ( Base ‘ 𝑅 )
3 lindslinind.0 0 = ( 0g𝑅 )
4 lindslinind.z 𝑍 = ( 0g𝑀 )
5 lindslinind.y 𝑌 = ( ( invg𝑅 ) ‘ ( 𝑓𝑥 ) )
6 lindslinind.g 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) )
7 simp3r ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 𝑓 finSupp 0 )
8 3 fvexi 0 ∈ V
9 8 a1i ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 0 ∈ V )
10 7 9 fsuppres ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) ) finSupp 0 )
11 6 10 eqbrtrid ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆 ) ∧ ( 𝑓 ∈ ( 𝐵m 𝑆 ) ∧ 𝑓 finSupp 0 ) ) → 𝐺 finSupp 0 )