| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindslinind.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 2 |
|
lindslinind.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
lindslinind.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
lindslinind.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 5 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 6 |
|
elpwg |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 8 |
5 7
|
mpbird |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) → 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → 𝑀 ∈ LMod ) |
| 10 |
|
ssdifss |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 12 |
|
difexg |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∖ { 𝑠 } ) ∈ V ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑆 ∖ { 𝑠 } ) ∈ V ) |
| 14 |
|
elpwg |
⊢ ( ( 𝑆 ∖ { 𝑠 } ) ∈ V → ( ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ ( 𝑆 ∖ { 𝑠 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ ( 𝑆 ∖ { 𝑠 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
| 16 |
11 15
|
mpbird |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 18 |
17
|
lspeqlco |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) = ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) |
| 19 |
18
|
eleq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 20 |
19
|
bicomd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 21 |
9 16 20
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 22 |
21
|
notbid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 23 |
17 1 2
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 24 |
3
|
eqcomi |
⊢ ( 0g ‘ 𝑅 ) = 0 |
| 25 |
24
|
breq2i |
⊢ ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑔 finSupp 0 ) |
| 26 |
25
|
anbi1i |
⊢ ( ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 27 |
26
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 28 |
27
|
anbi2i |
⊢ ( ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 29 |
23 28
|
bitrdi |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 30 |
9 16 29
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 31 |
30
|
notbid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ¬ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 32 |
|
ianor |
⊢ ( ¬ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 33 |
|
ralnex |
⊢ ( ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ¬ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 34 |
|
ianor |
⊢ ( ¬ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 35 |
34
|
ralbii |
⊢ ( ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ¬ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 36 |
33 35
|
bitr3i |
⊢ ( ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 37 |
36
|
orbi2i |
⊢ ( ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 38 |
32 37
|
bitri |
⊢ ( ¬ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 39 |
31 38
|
bitrdi |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 40 |
22 39
|
bitrd |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 41 |
40
|
2ralbidv |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 42 |
|
simpllr |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑀 ∈ LMod ) |
| 43 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → 𝑦 ∈ 𝐵 ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑦 ∈ 𝐵 ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑦 ∈ 𝐵 ) |
| 46 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ ( Base ‘ 𝑀 ) ) |
| 47 |
46
|
ad2ant2lr |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑠 ∈ ( Base ‘ 𝑀 ) ) |
| 48 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 49 |
17 1 48 2
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ) |
| 50 |
42 45 47 49
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ) |
| 51 |
50
|
notnotd |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ¬ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ) |
| 52 |
|
nbfal |
⊢ ( ¬ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ↔ ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ↔ ⊥ ) ) |
| 53 |
51 52
|
sylib |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ↔ ⊥ ) ) |
| 54 |
53
|
orbi1d |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ⊥ ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 55 |
54
|
2ralbidva |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ⊥ ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 56 |
|
r19.32v |
⊢ ( ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ⊥ ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ⊥ ∨ ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 57 |
56
|
ralbii |
⊢ ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ⊥ ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ∀ 𝑠 ∈ 𝑆 ( ⊥ ∨ ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 58 |
|
r19.32v |
⊢ ( ∀ 𝑠 ∈ 𝑆 ( ⊥ ∨ ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ⊥ ∨ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 59 |
57 58
|
bitri |
⊢ ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ⊥ ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ⊥ ∨ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 60 |
|
falim |
⊢ ( ⊥ → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 61 |
|
sneq |
⊢ ( 𝑠 = 𝑥 → { 𝑠 } = { 𝑥 } ) |
| 62 |
61
|
difeq2d |
⊢ ( 𝑠 = 𝑥 → ( 𝑆 ∖ { 𝑠 } ) = ( 𝑆 ∖ { 𝑥 } ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑠 = 𝑥 → ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) = ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 64 |
|
oveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
| 65 |
62
|
oveq2d |
⊢ ( 𝑠 = 𝑥 → ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 66 |
64 65
|
eqeq12d |
⊢ ( 𝑠 = 𝑥 → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 67 |
66
|
notbid |
⊢ ( 𝑠 = 𝑥 → ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ↔ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 68 |
67
|
orbi2d |
⊢ ( 𝑠 = 𝑥 → ( ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 69 |
63 68
|
raleqbidv |
⊢ ( 𝑠 = 𝑥 → ( ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 70 |
69
|
ralbidv |
⊢ ( 𝑠 = 𝑥 → ( ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 71 |
70
|
rspcva |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 72 |
1 2 3 4
|
lindslinindsimp2lem5 |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 73 |
72
|
expr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑥 ∈ 𝑆 → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
| 74 |
73
|
com14 |
⊢ ( ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑥 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑥 ∈ 𝑆 → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
| 75 |
71 74
|
syl |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( 𝑥 ∈ 𝑆 → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
| 76 |
75
|
ex |
⊢ ( 𝑥 ∈ 𝑆 → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) → ( 𝑥 ∈ 𝑆 → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) ) |
| 77 |
76
|
pm2.43a |
⊢ ( 𝑥 ∈ 𝑆 → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
| 78 |
77
|
com14 |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( 𝑥 ∈ 𝑆 → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
| 79 |
78
|
imp |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ( 𝑥 ∈ 𝑆 → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 80 |
79
|
expdimp |
⊢ ( ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝑥 ∈ 𝑆 → ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 81 |
80
|
ralrimdv |
⊢ ( ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 82 |
81
|
ralrimiva |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 83 |
82
|
expcom |
⊢ ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 84 |
60 83
|
jaoi |
⊢ ( ( ⊥ ∨ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 85 |
84
|
com12 |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ( ⊥ ∨ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 86 |
59 85
|
biimtrid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ⊥ ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 87 |
55 86
|
sylbid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∨ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 88 |
41 87
|
sylbid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 89 |
88
|
impr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 90 |
8 89
|
jca |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
| 91 |
90
|
ex |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |