| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lindslinind.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑀 ) | 
						
							| 2 |  | lindslinind.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | lindslinind.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | lindslinind.z | ⊢ 𝑍  =  ( 0g ‘ 𝑀 ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  𝑆  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 6 |  | elpwg | ⊢ ( 𝑆  ∈  𝑉  →  ( 𝑆  ∈  𝒫  ( Base ‘ 𝑀 )  ↔  𝑆  ⊆  ( Base ‘ 𝑀 ) ) ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ( 𝑆  ∈  𝒫  ( Base ‘ 𝑀 )  ↔  𝑆  ⊆  ( Base ‘ 𝑀 ) ) ) | 
						
							| 8 | 5 7 | mpbird | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  𝑆  ∈  𝒫  ( Base ‘ 𝑀 ) ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  𝑀  ∈  LMod ) | 
						
							| 10 |  | ssdifss | ⊢ ( 𝑆  ⊆  ( Base ‘ 𝑀 )  →  ( 𝑆  ∖  { 𝑠 } )  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑆  ∖  { 𝑠 } )  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 12 |  | difexg | ⊢ ( 𝑆  ∈  𝑉  →  ( 𝑆  ∖  { 𝑠 } )  ∈  V ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑆  ∖  { 𝑠 } )  ∈  V ) | 
						
							| 14 |  | elpwg | ⊢ ( ( 𝑆  ∖  { 𝑠 } )  ∈  V  →  ( ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 )  ↔  ( 𝑆  ∖  { 𝑠 } )  ⊆  ( Base ‘ 𝑀 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 )  ↔  ( 𝑆  ∖  { 𝑠 } )  ⊆  ( Base ‘ 𝑀 ) ) ) | 
						
							| 16 | 11 15 | mpbird | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 18 | 17 | lspeqlco | ⊢ ( ( 𝑀  ∈  LMod  ∧  ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 ) )  →  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  =  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( ( 𝑀  ∈  LMod  ∧  ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 20 | 19 | bicomd | ⊢ ( ( 𝑀  ∈  LMod  ∧  ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 21 | 9 16 20 | syl2anc | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 22 | 21 | notbid | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) )  ↔  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 23 | 17 1 2 | lcoval | ⊢ ( ( 𝑀  ∈  LMod  ∧  ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp  ( 0g ‘ 𝑅 )  ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 24 | 3 | eqcomi | ⊢ ( 0g ‘ 𝑅 )  =   0 | 
						
							| 25 | 24 | breq2i | ⊢ ( 𝑔  finSupp  ( 0g ‘ 𝑅 )  ↔  𝑔  finSupp   0  ) | 
						
							| 26 | 25 | anbi1i | ⊢ ( ( 𝑔  finSupp  ( 0g ‘ 𝑅 )  ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 27 | 26 | rexbii | ⊢ ( ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp  ( 0g ‘ 𝑅 )  ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 28 | 27 | anbi2i | ⊢ ( ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp  ( 0g ‘ 𝑅 )  ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 29 | 23 28 | bitrdi | ⊢ ( ( 𝑀  ∈  LMod  ∧  ( 𝑆  ∖  { 𝑠 } )  ∈  𝒫  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 30 | 9 16 29 | syl2anc | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 31 | 30 | notbid | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  ↔  ¬  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 32 |  | ianor | ⊢ ( ¬  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ¬  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 33 |  | ralnex | ⊢ ( ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ¬  ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ¬  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 34 |  | ianor | ⊢ ( ¬  ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 35 | 34 | ralbii | ⊢ ( ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ¬  ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 36 | 33 35 | bitr3i | ⊢ ( ¬  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) | 
						
							| 37 | 36 | orbi2i | ⊢ ( ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ¬  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 38 | 32 37 | bitri | ⊢ ( ¬  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∧  ∃ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( 𝑔  finSupp   0   ∧  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 39 | 31 38 | bitrdi | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( 𝑀  LinCo  ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 40 | 22 39 | bitrd | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 41 | 40 | 2ralbidv | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) )  ↔  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 42 |  | simpllr | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑀  ∈  LMod ) | 
						
							| 43 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  {  0  } )  →  𝑦  ∈  𝐵 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 46 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  𝑠  ∈  𝑆 )  →  𝑠  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 47 | 46 | ad2ant2lr | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑠  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 48 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑀 )  =  (  ·𝑠  ‘ 𝑀 ) | 
						
							| 49 | 17 1 48 2 | lmodvscl | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑦  ∈  𝐵  ∧  𝑠  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 50 | 42 45 47 49 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 51 | 50 | notnotd | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ¬  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 52 |  | nbfal | ⊢ ( ¬  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ↔  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ↔  ⊥ ) ) | 
						
							| 53 | 51 52 | sylib | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ↔  ⊥ ) ) | 
						
							| 54 | 53 | orbi1d | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ( 𝑠  ∈  𝑆  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ⊥  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 55 | 54 | 2ralbidva | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ⊥  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) ) | 
						
							| 56 |  | r19.32v | ⊢ ( ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ⊥  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ⊥  ∨  ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 57 | 56 | ralbii | ⊢ ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ⊥  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ∀ 𝑠  ∈  𝑆 ( ⊥  ∨  ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 58 |  | r19.32v | ⊢ ( ∀ 𝑠  ∈  𝑆 ( ⊥  ∨  ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ⊥  ∨  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 59 | 57 58 | bitri | ⊢ ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ⊥  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ↔  ( ⊥  ∨  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) ) ) | 
						
							| 60 |  | falim | ⊢ ( ⊥  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 61 |  | sneq | ⊢ ( 𝑠  =  𝑥  →  { 𝑠 }  =  { 𝑥 } ) | 
						
							| 62 | 61 | difeq2d | ⊢ ( 𝑠  =  𝑥  →  ( 𝑆  ∖  { 𝑠 } )  =  ( 𝑆  ∖  { 𝑥 } ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑠  =  𝑥  →  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) )  =  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ) | 
						
							| 64 |  | oveq2 | ⊢ ( 𝑠  =  𝑥  →  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 ) ) | 
						
							| 65 | 62 | oveq2d | ⊢ ( 𝑠  =  𝑥  →  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) | 
						
							| 66 | 64 65 | eqeq12d | ⊢ ( 𝑠  =  𝑥  →  ( ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) )  ↔  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 67 | 66 | notbid | ⊢ ( 𝑠  =  𝑥  →  ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) )  ↔  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 68 | 67 | orbi2d | ⊢ ( 𝑠  =  𝑥  →  ( ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 69 | 63 68 | raleqbidv | ⊢ ( 𝑠  =  𝑥  →  ( ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 70 | 69 | ralbidv | ⊢ ( 𝑠  =  𝑥  →  ( ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  ↔  ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 71 | 70 | rspcva | ⊢ ( ( 𝑥  ∈  𝑆  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 72 | 1 2 3 4 | lindslinindsimp2lem5 | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  𝑥  ∈  𝑆 ) )  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) )  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 73 | 72 | expr | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑥  ∈  𝑆  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) )  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 74 | 73 | com14 | ⊢ ( ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑥 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑥 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑥 } ) ) )  →  ( 𝑥  ∈  𝑆  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 75 | 71 74 | syl | ⊢ ( ( 𝑥  ∈  𝑆  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ( 𝑥  ∈  𝑆  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 76 | 75 | ex | ⊢ ( 𝑥  ∈  𝑆  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  →  ( 𝑥  ∈  𝑆  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) ) | 
						
							| 77 | 76 | pm2.43a | ⊢ ( 𝑥  ∈  𝑆  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 78 | 77 | com14 | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( 𝑥  ∈  𝑆  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 79 | 78 | imp | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ( ( 𝑓  ∈  ( 𝐵  ↑m  𝑆 )  ∧  ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 ) )  →  ( 𝑥  ∈  𝑆  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 80 | 79 | expdimp | ⊢ ( ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ∧  𝑓  ∈  ( 𝐵  ↑m  𝑆 ) )  →  ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ( 𝑥  ∈  𝑆  →  ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 81 | 80 | ralrimdv | ⊢ ( ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  ∧  𝑓  ∈  ( 𝐵  ↑m  𝑆 ) )  →  ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) | 
						
							| 82 | 81 | ralrimiva | ⊢ ( ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) | 
						
							| 83 | 82 | expcom | ⊢ ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) )  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 84 | 60 83 | jaoi | ⊢ ( ( ⊥  ∨  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 85 | 84 | com12 | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ( ⊥  ∨  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 86 | 59 85 | biimtrid | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ⊥  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 87 | 55 86 | sylbid | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( Base ‘ 𝑀 )  ∨  ∀ 𝑔  ∈  ( 𝐵  ↑m  ( 𝑆  ∖  { 𝑠 } ) ) ( ¬  𝑔  finSupp   0   ∨  ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  =  ( 𝑔 (  linC  ‘ 𝑀 ) ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 88 | 41 87 | sylbid | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  𝑆  ⊆  ( Base ‘ 𝑀 ) )  →  ( ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 89 | 88 | impr | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) | 
						
							| 90 | 8 89 | jca | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  ∧  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) ) )  →  ( 𝑆  ∈  𝒫  ( Base ‘ 𝑀 )  ∧  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 91 | 90 | ex | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑀  ∈  LMod )  →  ( ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑠  ∈  𝑆 ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ¬  ( 𝑦 (  ·𝑠  ‘ 𝑀 ) 𝑠 )  ∈  ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆  ∖  { 𝑠 } ) ) )  →  ( 𝑆  ∈  𝒫  ( Base ‘ 𝑀 )  ∧  ∀ 𝑓  ∈  ( 𝐵  ↑m  𝑆 ) ( ( 𝑓  finSupp   0   ∧  ( 𝑓 (  linC  ‘ 𝑀 ) 𝑆 )  =  𝑍 )  →  ∀ 𝑥  ∈  𝑆 ( 𝑓 ‘ 𝑥 )  =   0  ) ) ) ) |