Step |
Hyp |
Ref |
Expression |
1 |
|
lindslinind.r |
|
2 |
|
lindslinind.b |
|
3 |
|
lindslinind.0 |
|
4 |
|
lindslinind.z |
|
5 |
|
simprl |
|
6 |
|
elpwg |
|
7 |
6
|
ad2antrr |
|
8 |
5 7
|
mpbird |
|
9 |
|
simplr |
|
10 |
|
ssdifss |
|
11 |
10
|
adantl |
|
12 |
|
difexg |
|
13 |
12
|
ad2antrr |
|
14 |
|
elpwg |
|
15 |
13 14
|
syl |
|
16 |
11 15
|
mpbird |
|
17 |
|
eqid |
|
18 |
17
|
lspeqlco |
|
19 |
18
|
eleq2d |
|
20 |
19
|
bicomd |
|
21 |
9 16 20
|
syl2anc |
|
22 |
21
|
notbid |
|
23 |
17 1 2
|
lcoval |
|
24 |
3
|
eqcomi |
|
25 |
24
|
breq2i |
|
26 |
25
|
anbi1i |
|
27 |
26
|
rexbii |
|
28 |
27
|
anbi2i |
|
29 |
23 28
|
bitrdi |
|
30 |
9 16 29
|
syl2anc |
|
31 |
30
|
notbid |
|
32 |
|
ianor |
|
33 |
|
ralnex |
|
34 |
|
ianor |
|
35 |
34
|
ralbii |
|
36 |
33 35
|
bitr3i |
|
37 |
36
|
orbi2i |
|
38 |
32 37
|
bitri |
|
39 |
31 38
|
bitrdi |
|
40 |
22 39
|
bitrd |
|
41 |
40
|
2ralbidv |
|
42 |
|
simpllr |
|
43 |
|
eldifi |
|
44 |
43
|
adantl |
|
45 |
44
|
adantl |
|
46 |
|
ssel2 |
|
47 |
46
|
ad2ant2lr |
|
48 |
|
eqid |
|
49 |
17 1 48 2
|
lmodvscl |
|
50 |
42 45 47 49
|
syl3anc |
|
51 |
50
|
notnotd |
|
52 |
|
nbfal |
|
53 |
51 52
|
sylib |
|
54 |
53
|
orbi1d |
|
55 |
54
|
2ralbidva |
|
56 |
|
r19.32v |
|
57 |
56
|
ralbii |
|
58 |
|
r19.32v |
|
59 |
57 58
|
bitri |
|
60 |
|
falim |
|
61 |
|
sneq |
|
62 |
61
|
difeq2d |
|
63 |
62
|
oveq2d |
|
64 |
|
oveq2 |
|
65 |
62
|
oveq2d |
|
66 |
64 65
|
eqeq12d |
|
67 |
66
|
notbid |
|
68 |
67
|
orbi2d |
|
69 |
63 68
|
raleqbidv |
|
70 |
69
|
ralbidv |
|
71 |
70
|
rspcva |
|
72 |
1 2 3 4
|
lindslinindsimp2lem5 |
|
73 |
72
|
expr |
|
74 |
73
|
com14 |
|
75 |
71 74
|
syl |
|
76 |
75
|
ex |
|
77 |
76
|
pm2.43a |
|
78 |
77
|
com14 |
|
79 |
78
|
imp |
|
80 |
79
|
expdimp |
|
81 |
80
|
ralrimdv |
|
82 |
81
|
ralrimiva |
|
83 |
82
|
expcom |
|
84 |
60 83
|
jaoi |
|
85 |
84
|
com12 |
|
86 |
59 85
|
syl5bi |
|
87 |
55 86
|
sylbid |
|
88 |
41 87
|
sylbid |
|
89 |
88
|
impr |
|
90 |
8 89
|
jca |
|
91 |
90
|
ex |
|