Metamath Proof Explorer


Theorem lindslinindsimp2lem5

Description: Lemma 5 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lindslinind.r R = Scalar M
lindslinind.b B = Base R
lindslinind.0 0 ˙ = 0 R
lindslinind.z Z = 0 M
Assertion lindslinindsimp2lem5 S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙

Proof

Step Hyp Ref Expression
1 lindslinind.r R = Scalar M
2 lindslinind.b B = Base R
3 lindslinind.0 0 ˙ = 0 R
4 lindslinind.z Z = 0 M
5 ax-1 f x = 0 ˙ y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙
6 5 2a1d f x = 0 ˙ S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙
7 elmapi f B S f : S B
8 ffvelrn f : S B x S f x B
9 8 expcom x S f : S B f x B
10 9 adantl S Base M x S f : S B f x B
11 10 adantl S V M LMod S Base M x S f : S B f x B
12 11 com12 f : S B S V M LMod S Base M x S f x B
13 7 12 syl f B S S V M LMod S Base M x S f x B
14 13 adantr f B S finSupp 0 ˙ f f linC M S = Z S V M LMod S Base M x S f x B
15 14 impcom S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x B
16 15 biantrurd S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x 0 ˙ f x B f x 0 ˙
17 df-ne f x 0 ˙ ¬ f x = 0 ˙
18 17 bicomi ¬ f x = 0 ˙ f x 0 ˙
19 eldifsn f x B 0 ˙ f x B f x 0 ˙
20 16 18 19 3bitr4g S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z ¬ f x = 0 ˙ f x B 0 ˙
21 1 lmodfgrp M LMod R Grp
22 21 adantl S V M LMod R Grp
23 22 adantr S V M LMod S Base M x S R Grp
24 23 adantr S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z R Grp
25 eqid inv g R = inv g R
26 2 3 25 grpinvnzcl R Grp f x B 0 ˙ inv g R f x B 0 ˙
27 24 26 sylan S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x B 0 ˙ inv g R f x B 0 ˙
28 27 ex S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x B 0 ˙ inv g R f x B 0 ˙
29 20 28 sylbid S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z ¬ f x = 0 ˙ inv g R f x B 0 ˙
30 oveq1 y = inv g R f x y M x = inv g R f x M x
31 30 eqeq1d y = inv g R f x y M x = g linC M S x inv g R f x M x = g linC M S x
32 31 notbid y = inv g R f x ¬ y M x = g linC M S x ¬ inv g R f x M x = g linC M S x
33 32 orbi2d y = inv g R f x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x
34 33 ralbidv y = inv g R f x g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x
35 34 rspcva inv g R f x B 0 ˙ y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x
36 simpl S V M LMod S Base M x S S V M LMod
37 36 adantr S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z S V M LMod
38 simplrl S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z S Base M
39 simplrr S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z x S
40 simpl f B S finSupp 0 ˙ f f linC M S = Z f B S
41 40 adantl S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f B S
42 eqid inv g R f x = inv g R f x
43 eqid f S x = f S x
44 1 2 3 4 42 43 lindslinindimp2lem2 S V M LMod S Base M x S f B S f S x B S x
45 37 38 39 41 44 syl13anc S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f S x B S x
46 id g = f S x g = f S x
47 3 a1i g = f S x 0 ˙ = 0 R
48 46 47 breq12d g = f S x finSupp 0 ˙ g finSupp 0 R f S x
49 48 notbid g = f S x ¬ finSupp 0 ˙ g ¬ finSupp 0 R f S x
50 oveq1 g = f S x g linC M S x = f S x linC M S x
51 50 eqeq2d g = f S x inv g R f x M x = g linC M S x inv g R f x M x = f S x linC M S x
52 51 notbid g = f S x ¬ inv g R f x M x = g linC M S x ¬ inv g R f x M x = f S x linC M S x
53 49 52 orbi12d g = f S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x ¬ finSupp 0 R f S x ¬ inv g R f x M x = f S x linC M S x
54 53 rspcva f S x B S x g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x ¬ finSupp 0 R f S x ¬ inv g R f x M x = f S x linC M S x
55 3 breq2i finSupp 0 ˙ f finSupp 0 R f
56 55 biimpi finSupp 0 ˙ f finSupp 0 R f
57 56 adantr finSupp 0 ˙ f f linC M S = Z finSupp 0 R f
58 57 adantl f B S finSupp 0 ˙ f f linC M S = Z finSupp 0 R f
59 58 adantl S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z finSupp 0 R f
60 fvexd S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z 0 R V
61 59 60 fsuppres S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z finSupp 0 R f S x
62 61 pm2.24d S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z ¬ finSupp 0 R f S x f x = 0 ˙
63 62 com12 ¬ finSupp 0 R f S x S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x = 0 ˙
64 simplr S V M LMod S Base M x S M LMod
65 64 adantr S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M LMod
66 1 fveq2i Base R = Base Scalar M
67 2 66 eqtr2i Base Scalar M = B
68 67 oveq1i Base Scalar M S x = B S x
69 45 68 eleqtrrdi S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f S x Base Scalar M S x
70 ssdifss S Base M S x Base M
71 70 adantr S Base M x S S x Base M
72 71 adantl S V M LMod S Base M x S S x Base M
73 difexg S V S x V
74 73 adantr S V M LMod S x V
75 74 adantr S V M LMod S Base M x S S x V
76 elpwg S x V S x 𝒫 Base M S x Base M
77 75 76 syl S V M LMod S Base M x S S x 𝒫 Base M S x Base M
78 72 77 mpbird S V M LMod S Base M x S S x 𝒫 Base M
79 78 adantr S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z S x 𝒫 Base M
80 lincval M LMod f S x Base Scalar M S x S x 𝒫 Base M f S x linC M S x = M z S x f S x z M z
81 65 69 79 80 syl3anc S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f S x linC M S x = M z S x f S x z M z
82 fvres z S x f S x z = f z
83 82 adantl S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z z S x f S x z = f z
84 83 oveq1d S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z z S x f S x z M z = f z M z
85 84 mpteq2dva S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z z S x f S x z M z = z S x f z M z
86 85 oveq2d S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M z S x f S x z M z = M z S x f z M z
87 simplr S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z S Base M x S
88 3anass f B S finSupp 0 ˙ f f linC M S = Z f B S finSupp 0 ˙ f f linC M S = Z
89 88 bicomi f B S finSupp 0 ˙ f f linC M S = Z f B S finSupp 0 ˙ f f linC M S = Z
90 89 biimpi f B S finSupp 0 ˙ f f linC M S = Z f B S finSupp 0 ˙ f f linC M S = Z
91 90 adantl S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f B S finSupp 0 ˙ f f linC M S = Z
92 1 2 3 4 42 43 lindslinindimp2lem4 S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M z S x f z M z = inv g R f x M x
93 37 87 91 92 syl3anc S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M z S x f z M z = inv g R f x M x
94 81 86 93 3eqtrrd S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z inv g R f x M x = f S x linC M S x
95 94 pm2.24d S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z ¬ inv g R f x M x = f S x linC M S x f x = 0 ˙
96 95 com12 ¬ inv g R f x M x = f S x linC M S x S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x = 0 ˙
97 63 96 jaoi ¬ finSupp 0 R f S x ¬ inv g R f x M x = f S x linC M S x S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x = 0 ˙
98 54 97 syl f S x B S x g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x = 0 ˙
99 98 ex f S x B S x g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z f x = 0 ˙
100 99 com23 f S x B S x S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x f x = 0 ˙
101 45 100 mpcom S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z g B S x ¬ finSupp 0 ˙ g ¬ inv g R f x M x = g linC M S x f x = 0 ˙
102 35 101 syl5 S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z inv g R f x B 0 ˙ y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙
103 102 expd S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z inv g R f x B 0 ˙ y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙
104 29 103 syldc ¬ f x = 0 ˙ S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙
105 104 expd ¬ f x = 0 ˙ S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙
106 6 105 pm2.61i S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z y B 0 ˙ g B S x ¬ finSupp 0 ˙ g ¬ y M x = g linC M S x f x = 0 ˙