Metamath Proof Explorer


Theorem lindslinindimp2lem4

Description: Lemma 4 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019) (Proof shortened by II, 16-Feb-2023)

Ref Expression
Hypotheses lindslinind.r R = Scalar M
lindslinind.b B = Base R
lindslinind.0 0 ˙ = 0 R
lindslinind.z Z = 0 M
lindslinind.y Y = inv g R f x
lindslinind.g G = f S x
Assertion lindslinindimp2lem4 S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M y S x f y M y = Y M x

Proof

Step Hyp Ref Expression
1 lindslinind.r R = Scalar M
2 lindslinind.b B = Base R
3 lindslinind.0 0 ˙ = 0 R
4 lindslinind.z Z = 0 M
5 lindslinind.y Y = inv g R f x
6 lindslinind.g G = f S x
7 simpr S V M LMod M LMod
8 7 adantr S V M LMod S Base M x S M LMod
9 simprl S V M LMod S Base M x S S Base M
10 elpwg S V S 𝒫 Base M S Base M
11 10 ad2antrr S V M LMod S Base M x S S 𝒫 Base M S Base M
12 9 11 mpbird S V M LMod S Base M x S S 𝒫 Base M
13 simpr S Base M x S x S
14 13 adantl S V M LMod S Base M x S x S
15 8 12 14 3jca S V M LMod S Base M x S M LMod S 𝒫 Base M x S
16 15 adantl f B S finSupp 0 ˙ f S V M LMod S Base M x S M LMod S 𝒫 Base M x S
17 simpl f B S finSupp 0 ˙ f S V M LMod S Base M x S f B S finSupp 0 ˙ f
18 6 a1i f B S finSupp 0 ˙ f S V M LMod S Base M x S G = f S x
19 eqid Base M = Base M
20 eqid M = M
21 eqid + M = + M
22 19 1 2 20 21 3 lincdifsn M LMod S 𝒫 Base M x S f B S finSupp 0 ˙ f G = f S x f linC M S = G linC M S x + M f x M x
23 16 17 18 22 syl3anc f B S finSupp 0 ˙ f S V M LMod S Base M x S f linC M S = G linC M S x + M f x M x
24 23 eqeq1d f B S finSupp 0 ˙ f S V M LMod S Base M x S f linC M S = Z G linC M S x + M f x M x = Z
25 lmodgrp M LMod M Grp
26 25 adantl S V M LMod M Grp
27 26 ad2antrl f B S finSupp 0 ˙ f S V M LMod S Base M x S M Grp
28 7 ad2antrl f B S finSupp 0 ˙ f S V M LMod S Base M x S M LMod
29 elmapi f B S f : S B
30 ffvelrn f : S B x S f x B
31 30 expcom x S f : S B f x B
32 31 ad2antll S V M LMod S Base M x S f : S B f x B
33 29 32 syl5com f B S S V M LMod S Base M x S f x B
34 33 adantr f B S finSupp 0 ˙ f S V M LMod S Base M x S f x B
35 34 imp f B S finSupp 0 ˙ f S V M LMod S Base M x S f x B
36 ssel2 S Base M x S x Base M
37 36 ad2antll f B S finSupp 0 ˙ f S V M LMod S Base M x S x Base M
38 19 1 20 2 lmodvscl M LMod f x B x Base M f x M x Base M
39 28 35 37 38 syl3anc f B S finSupp 0 ˙ f S V M LMod S Base M x S f x M x Base M
40 difexg S V S x V
41 40 ad2antrr S V M LMod S Base M x S S x V
42 ssdifss S Base M S x Base M
43 42 ad2antrl S V M LMod S Base M x S S x Base M
44 41 43 jca S V M LMod S Base M x S S x V S x Base M
45 44 adantl f B S finSupp 0 ˙ f S V M LMod S Base M x S S x V S x Base M
46 simprl f B S finSupp 0 ˙ f S V M LMod S Base M x S S V M LMod
47 simpl S Base M x S S Base M
48 47 ad2antll f B S finSupp 0 ˙ f S V M LMod S Base M x S S Base M
49 13 ad2antll f B S finSupp 0 ˙ f S V M LMod S Base M x S x S
50 simpl f B S finSupp 0 ˙ f f B S
51 50 adantr f B S finSupp 0 ˙ f S V M LMod S Base M x S f B S
52 1 2 3 4 5 6 lindslinindimp2lem2 S V M LMod S Base M x S f B S G B S x
53 46 48 49 51 52 syl13anc f B S finSupp 0 ˙ f S V M LMod S Base M x S G B S x
54 simpr S V M LMod S Base M x S S Base M x S
55 54 adantl f B S finSupp 0 ˙ f S V M LMod S Base M x S S Base M x S
56 1 2 3 4 5 6 lindslinindimp2lem3 S V M LMod S Base M x S f B S finSupp 0 ˙ f finSupp 0 ˙ G
57 46 55 17 56 syl3anc f B S finSupp 0 ˙ f S V M LMod S Base M x S finSupp 0 ˙ G
58 53 57 jca f B S finSupp 0 ˙ f S V M LMod S Base M x S G B S x finSupp 0 ˙ G
59 19 1 2 3 lincfsuppcl M LMod S x V S x Base M G B S x finSupp 0 ˙ G G linC M S x Base M
60 28 45 58 59 syl3anc f B S finSupp 0 ˙ f S V M LMod S Base M x S G linC M S x Base M
61 eqid inv g M = inv g M
62 19 21 4 61 grpinvid2 M Grp f x M x Base M G linC M S x Base M inv g M f x M x = G linC M S x G linC M S x + M f x M x = Z
63 27 39 60 62 syl3anc f B S finSupp 0 ˙ f S V M LMod S Base M x S inv g M f x M x = G linC M S x G linC M S x + M f x M x = Z
64 24 63 bitr4d f B S finSupp 0 ˙ f S V M LMod S Base M x S f linC M S = Z inv g M f x M x = G linC M S x
65 eqcom inv g M f x M x = G linC M S x G linC M S x = inv g M f x M x
66 1 fveq2i Base R = Base Scalar M
67 2 66 eqtri B = Base Scalar M
68 67 oveq1i B S x = Base Scalar M S x
69 53 68 eleqtrdi f B S finSupp 0 ˙ f S V M LMod S Base M x S G Base Scalar M S x
70 41 43 elpwd S V M LMod S Base M x S S x 𝒫 Base M
71 70 adantl f B S finSupp 0 ˙ f S V M LMod S Base M x S S x 𝒫 Base M
72 lincval M LMod G Base Scalar M S x S x 𝒫 Base M G linC M S x = M y S x G y M y
73 28 69 71 72 syl3anc f B S finSupp 0 ˙ f S V M LMod S Base M x S G linC M S x = M y S x G y M y
74 73 eqeq1d f B S finSupp 0 ˙ f S V M LMod S Base M x S G linC M S x = inv g M f x M x M y S x G y M y = inv g M f x M x
75 6 fveq1i G y = f S x y
76 75 a1i f B S finSupp 0 ˙ f S V M LMod S Base M x S y S x G y = f S x y
77 fvres y S x f S x y = f y
78 77 adantl f B S finSupp 0 ˙ f S V M LMod S Base M x S y S x f S x y = f y
79 76 78 eqtrd f B S finSupp 0 ˙ f S V M LMod S Base M x S y S x G y = f y
80 79 oveq1d f B S finSupp 0 ˙ f S V M LMod S Base M x S y S x G y M y = f y M y
81 80 mpteq2dva f B S finSupp 0 ˙ f S V M LMod S Base M x S y S x G y M y = y S x f y M y
82 81 oveq2d f B S finSupp 0 ˙ f S V M LMod S Base M x S M y S x G y M y = M y S x f y M y
83 eqid inv g R = inv g R
84 19 1 20 61 2 83 28 37 35 lmodvsneg f B S finSupp 0 ˙ f S V M LMod S Base M x S inv g M f x M x = inv g R f x M x
85 5 eqcomi inv g R f x = Y
86 85 a1i f B S finSupp 0 ˙ f S V M LMod S Base M x S inv g R f x = Y
87 86 oveq1d f B S finSupp 0 ˙ f S V M LMod S Base M x S inv g R f x M x = Y M x
88 84 87 eqtrd f B S finSupp 0 ˙ f S V M LMod S Base M x S inv g M f x M x = Y M x
89 82 88 eqeq12d f B S finSupp 0 ˙ f S V M LMod S Base M x S M y S x G y M y = inv g M f x M x M y S x f y M y = Y M x
90 89 biimpd f B S finSupp 0 ˙ f S V M LMod S Base M x S M y S x G y M y = inv g M f x M x M y S x f y M y = Y M x
91 74 90 sylbid f B S finSupp 0 ˙ f S V M LMod S Base M x S G linC M S x = inv g M f x M x M y S x f y M y = Y M x
92 65 91 syl5bi f B S finSupp 0 ˙ f S V M LMod S Base M x S inv g M f x M x = G linC M S x M y S x f y M y = Y M x
93 64 92 sylbid f B S finSupp 0 ˙ f S V M LMod S Base M x S f linC M S = Z M y S x f y M y = Y M x
94 93 ex f B S finSupp 0 ˙ f S V M LMod S Base M x S f linC M S = Z M y S x f y M y = Y M x
95 94 com23 f B S finSupp 0 ˙ f f linC M S = Z S V M LMod S Base M x S M y S x f y M y = Y M x
96 95 3impia f B S finSupp 0 ˙ f f linC M S = Z S V M LMod S Base M x S M y S x f y M y = Y M x
97 96 com12 S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M y S x f y M y = Y M x
98 97 3impia S V M LMod S Base M x S f B S finSupp 0 ˙ f f linC M S = Z M y S x f y M y = Y M x