Metamath Proof Explorer


Theorem lindslinindimp2lem3

Description: Lemma 3 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lindslinind.r R=ScalarM
lindslinind.b B=BaseR
lindslinind.0 0˙=0R
lindslinind.z Z=0M
lindslinind.y Y=invgRfx
lindslinind.g G=fSx
Assertion lindslinindimp2lem3 SVMLModSBaseMxSfBSfinSupp0˙ffinSupp0˙G

Proof

Step Hyp Ref Expression
1 lindslinind.r R=ScalarM
2 lindslinind.b B=BaseR
3 lindslinind.0 0˙=0R
4 lindslinind.z Z=0M
5 lindslinind.y Y=invgRfx
6 lindslinind.g G=fSx
7 simp3r SVMLModSBaseMxSfBSfinSupp0˙ffinSupp0˙f
8 3 fvexi 0˙V
9 8 a1i SVMLModSBaseMxSfBSfinSupp0˙f0˙V
10 7 9 fsuppres SVMLModSBaseMxSfBSfinSupp0˙ffinSupp0˙fSx
11 6 10 eqbrtrid SVMLModSBaseMxSfBSfinSupp0˙ffinSupp0˙G