Metamath Proof Explorer


Theorem lindslinindimp2lem3

Description: Lemma 3 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lindslinind.r R = Scalar M
lindslinind.b B = Base R
lindslinind.0 0 ˙ = 0 R
lindslinind.z Z = 0 M
lindslinind.y Y = inv g R f x
lindslinind.g G = f S x
Assertion lindslinindimp2lem3 S V M LMod S Base M x S f B S finSupp 0 ˙ f finSupp 0 ˙ G

Proof

Step Hyp Ref Expression
1 lindslinind.r R = Scalar M
2 lindslinind.b B = Base R
3 lindslinind.0 0 ˙ = 0 R
4 lindslinind.z Z = 0 M
5 lindslinind.y Y = inv g R f x
6 lindslinind.g G = f S x
7 simp3r S V M LMod S Base M x S f B S finSupp 0 ˙ f finSupp 0 ˙ f
8 3 fvexi 0 ˙ V
9 8 a1i S V M LMod S Base M x S f B S finSupp 0 ˙ f 0 ˙ V
10 7 9 fsuppres S V M LMod S Base M x S f B S finSupp 0 ˙ f finSupp 0 ˙ f S x
11 6 10 eqbrtrid S V M LMod S Base M x S f B S finSupp 0 ˙ f finSupp 0 ˙ G