Metamath Proof Explorer


Theorem lindslininds

Description: Equivalence of definitions df-linds and df-lininds for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion lindslininds ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( 𝑆 linIndS 𝑀𝑆 ∈ ( LIndS ‘ 𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
2 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
3 eqid ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) )
4 eqid ( 0g𝑀 ) = ( 0g𝑀 )
5 1 2 3 4 lindslinindsimp1 ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠𝑆𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) )
6 1 2 3 4 lindslinindsimp2 ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠𝑆𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) )
7 5 6 impbid ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠𝑆𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) )
8 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
9 8 4 1 2 3 islininds ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) )
10 eqid ( ·𝑠𝑀 ) = ( ·𝑠𝑀 )
11 eqid ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 )
12 8 10 11 1 2 3 islinds2 ( 𝑀 ∈ LMod → ( 𝑆 ∈ ( LIndS ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠𝑆𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) )
13 12 adantl ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( 𝑆 ∈ ( LIndS ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠𝑆𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) )
14 7 9 13 3bitr4d ( ( 𝑆𝑉𝑀 ∈ LMod ) → ( 𝑆 linIndS 𝑀𝑆 ∈ ( LIndS ‘ 𝑀 ) ) )