Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
2 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
3 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
5 |
1 2 3 4
|
lindslinindsimp1 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
6 |
1 2 3 4
|
lindslinindsimp2 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) ) |
7 |
5 6
|
impbid |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
9 |
8 4 1 2 3
|
islininds |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) ) |
10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 ) |
12 |
8 10 11 1 2 3
|
islinds2 |
⊢ ( 𝑀 ∈ LMod → ( 𝑆 ∈ ( LIndS ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( 𝑆 ∈ ( LIndS ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑔 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ¬ ( 𝑔 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
14 |
7 9 13
|
3bitr4d |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( 𝑆 linIndS 𝑀 ↔ 𝑆 ∈ ( LIndS ‘ 𝑀 ) ) ) |