| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindslinind.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 2 |
|
lindslinind.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
lindslinind.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
lindslinind.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 5 |
|
elpwi |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 6 |
5
|
ad2antrl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → 𝑀 ∈ LMod ) |
| 8 |
7
|
anim2i |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) |
| 9 |
8
|
ancomd |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 10 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 11 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → 𝑦 ∈ 𝐵 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑦 ∈ 𝐵 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑦 ∈ 𝐵 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → 𝑦 ∈ 𝐵 ) |
| 15 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑠 ∈ 𝑆 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → 𝑠 ∈ 𝑆 ) |
| 17 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) |
| 18 |
14 16 17
|
3jca |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 19 |
|
simprrl |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → 𝑔 finSupp 0 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 21 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 22 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) |
| 23 |
20 1 2 3 4 21 22
|
lincext2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ∧ 𝑔 finSupp 0 ) → ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ) |
| 24 |
10 18 19 23
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ) |
| 25 |
8
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ 𝑀 ∈ LMod ) ) |
| 26 |
25
|
ancomd |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 28 |
20 1 2 3 4 21 22
|
lincext1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 29 |
27 18 28
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ∈ ( 𝐵 ↑m 𝑆 ) ) |
| 30 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑓 finSupp 0 ↔ ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) ) |
| 32 |
31
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ↔ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) |
| 33 |
30 32
|
anbi12d |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ↔ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ∧ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) ) |
| 34 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) |
| 35 |
34
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) |
| 36 |
35
|
ralbidv |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) |
| 37 |
33 36
|
imbi12d |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ∧ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
| 38 |
37
|
rspcv |
⊢ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ∈ ( 𝐵 ↑m 𝑆 ) → ( ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ∧ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
| 39 |
29 38
|
syl |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 ∧ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
| 40 |
39
|
exp4a |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) finSupp 0 → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) ) ) |
| 41 |
24 40
|
mpid |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) ) ) |
| 42 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 43 |
20 1 2 3 4 21 22
|
lincext3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) |
| 44 |
10 18 42 43
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) |
| 45 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = 0 ) ) |
| 46 |
45
|
rspcv |
⊢ ( 𝑠 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = 0 ) ) |
| 47 |
16 46
|
syl |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = 0 ) ) |
| 48 |
|
eqidd |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 49 |
|
iftrue |
⊢ ( 𝑧 = 𝑠 → if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) = ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑧 = 𝑠 ) → if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) = ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 51 |
|
fvexd |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ V ) |
| 52 |
48 50 15 51
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 54 |
53
|
eqeq1d |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = 0 ↔ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 ) ) |
| 55 |
1
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Grp ) |
| 56 |
2 3 21
|
grpinvnzcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 57 |
|
eldif |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ 𝐵 ∧ ¬ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ { 0 } ) ) |
| 58 |
|
fvex |
⊢ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ V |
| 59 |
58
|
elsn |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ { 0 } ↔ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 ) |
| 60 |
|
pm2.21 |
⊢ ( ¬ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 61 |
60
|
com25 |
⊢ ( ¬ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 62 |
59 61
|
sylnbi |
⊢ ( ¬ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ { 0 } → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 63 |
57 62
|
simplbiim |
⊢ ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 64 |
56 63
|
syl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 65 |
64
|
ex |
⊢ ( 𝑅 ∈ Grp → ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) ) |
| 66 |
55 65
|
syl |
⊢ ( 𝑀 ∈ LMod → ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∈ 𝑉 → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) ) |
| 67 |
66
|
com24 |
⊢ ( 𝑀 ∈ LMod → ( 𝑆 ∈ 𝑉 → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) ) |
| 68 |
67
|
impcom |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 69 |
68
|
impcom |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) → ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑠 ∈ 𝑆 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 70 |
69
|
com13 |
⊢ ( 𝑠 ∈ 𝑆 → ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 72 |
71
|
impcom |
⊢ ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 74 |
54 73
|
sylbid |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑠 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 75 |
47 74
|
syld |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 76 |
44 75
|
embantd |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ( ( ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑠 , ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) , ( 𝑔 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = 0 ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 77 |
41 76
|
syldc |
⊢ ( ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 78 |
77
|
exp5j |
⊢ ( ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) ) |
| 79 |
78
|
impcom |
⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) → ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 80 |
79
|
impcom |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 81 |
80
|
imp |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ∧ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 82 |
81
|
expdimp |
⊢ ( ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) → ( ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 83 |
82
|
expd |
⊢ ( ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) → ( 𝑔 finSupp 0 → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 84 |
83
|
impcom |
⊢ ( ( 𝑔 finSupp 0 ∧ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 85 |
84
|
pm2.01d |
⊢ ( ( 𝑔 finSupp 0 ∧ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) |
| 86 |
85
|
olcd |
⊢ ( ( 𝑔 finSupp 0 ∧ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 87 |
|
animorl |
⊢ ( ( ¬ 𝑔 finSupp 0 ∧ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) ) → ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 88 |
86 87
|
pm2.61ian |
⊢ ( ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) ∧ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ) → ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 89 |
88
|
ralrimiva |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 90 |
|
ralnex |
⊢ ( ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ¬ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 91 |
|
ianor |
⊢ ( ¬ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 92 |
91
|
ralbii |
⊢ ( ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ¬ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 93 |
90 92
|
bitr3i |
⊢ ( ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∀ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( ¬ 𝑔 finSupp 0 ∨ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 94 |
89 93
|
sylibr |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ¬ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 95 |
94
|
intnand |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ¬ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 96 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑀 ∈ LMod ) |
| 97 |
|
difexg |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∖ { 𝑠 } ) ∈ V ) |
| 98 |
97
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( 𝑆 ∖ { 𝑠 } ) ∈ V ) |
| 99 |
5
|
ssdifssd |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 100 |
99
|
ad2antrl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 101 |
98 100
|
elpwd |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 103 |
20
|
lspeqlco |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) = ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) |
| 104 |
103
|
eleq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 105 |
104
|
bicomd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 106 |
96 102 105
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 107 |
7
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → 𝑀 ∈ LMod ) |
| 108 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ V ) |
| 109 |
108 99
|
elpwd |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 110 |
109
|
ad2antrl |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 111 |
107 110
|
jca |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 112 |
111
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 113 |
20 1 2
|
lcoval |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 114 |
3
|
eqcomi |
⊢ ( 0g ‘ 𝑅 ) = 0 |
| 115 |
114
|
breq2i |
⊢ ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ↔ 𝑔 finSupp 0 ) |
| 116 |
115
|
anbi1i |
⊢ ( ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 117 |
116
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 118 |
117
|
anbi2i |
⊢ ( ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |
| 119 |
113 118
|
bitrdi |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑠 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 120 |
112 119
|
syl |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( 𝑀 LinCo ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 121 |
106 120
|
bitrd |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ↔ ( ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( Base ‘ 𝑀 ) ∧ ∃ 𝑔 ∈ ( 𝐵 ↑m ( 𝑆 ∖ { 𝑠 } ) ) ( 𝑔 finSupp 0 ∧ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( 𝑔 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) ) |
| 122 |
95 121
|
mtbird |
⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) |
| 123 |
122
|
ralrimivva |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) |
| 124 |
6 123
|
jca |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) |
| 125 |
124
|
ex |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑠 ∈ 𝑆 ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ ( ( LSpan ‘ 𝑀 ) ‘ ( 𝑆 ∖ { 𝑠 } ) ) ) ) ) |