Step |
Hyp |
Ref |
Expression |
1 |
|
lincext.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincext.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincext.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
lincext.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
lincext.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
6 |
|
lincext.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
7 |
|
lincext.f |
⊢ 𝐹 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑋 , ( 𝑁 ‘ 𝑌 ) , ( 𝐺 ‘ 𝑧 ) ) ) |
8 |
|
simp1l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑀 ∈ LMod ) |
9 |
|
simp1r |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑆 ∈ 𝒫 𝐵 ) |
10 |
|
simp2 |
⊢ ( ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝑋 ∈ 𝑆 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑋 ∈ 𝑆 ) |
12 |
1 2 3 4 5 6 7
|
lincext1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) |
13 |
12
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) |
14 |
1 2 3 4 5 6 7
|
lincext2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
15 |
14
|
3adant3r |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝐹 finSupp 0 ) |
16 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) → 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) |
17 |
7
|
fdmdifeqresdif |
⊢ ( 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
23 |
1 2 3 21 22 4
|
lincdifsn |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
24 |
8 9 11 13 15 20 23
|
syl321anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
25 |
|
oveq1 |
⊢ ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) → ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
26 |
25
|
eqcoms |
⊢ ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
28 |
27
|
3ad2ant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
29 |
|
eqid |
⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) |
30 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑀 ∈ LMod ) |
31 |
|
elelpwi |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
32 |
31
|
expcom |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵 ) ) |
34 |
33
|
com12 |
⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) ) |
36 |
35
|
impcom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑋 ∈ 𝐵 ) |
37 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑌 ∈ 𝐸 ) |
38 |
1 2 21 29 3 6 30 36 37
|
lmodvsneg |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( invg ‘ 𝑀 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑁 ‘ 𝑌 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
39 |
|
iftrue |
⊢ ( 𝑧 = 𝑋 → if ( 𝑧 = 𝑋 , ( 𝑁 ‘ 𝑌 ) , ( 𝐺 ‘ 𝑧 ) ) = ( 𝑁 ‘ 𝑌 ) ) |
40 |
10
|
adantl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝑋 ∈ 𝑆 ) |
41 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( 𝑁 ‘ 𝑌 ) ∈ V ) |
42 |
7 39 40 41
|
fvmptd3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) |
43 |
42
|
eqcomd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( 𝑁 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) |
44 |
43
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝑁 ‘ 𝑌 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
45 |
38 44
|
eqtr2d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( invg ‘ 𝑀 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) ) |
47 |
1 2 21 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
48 |
30 37 36 47
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
49 |
1 22 5 29
|
lmodvnegid |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) → ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) = 𝑍 ) |
50 |
30 48 49
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( invg ‘ 𝑀 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) = 𝑍 ) |
51 |
46 50
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) |
52 |
51
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) |
53 |
28 52
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) |
54 |
24 53
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ ( 𝐺 finSupp 0 ∧ ( 𝑌 ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) |