Step |
Hyp |
Ref |
Expression |
1 |
|
lincext.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincext.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincext.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
lincext.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
lincext.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
6 |
|
lincext.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
7 |
|
lincext.f |
⊢ 𝐹 = ( 𝑧 ∈ 𝑆 ↦ if ( 𝑧 = 𝑋 , ( 𝑁 ‘ 𝑌 ) , ( 𝐺 ‘ 𝑧 ) ) ) |
8 |
|
fvex |
⊢ ( 𝑁 ‘ 𝑌 ) ∈ V |
9 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑧 ) ∈ V |
10 |
8 9
|
ifex |
⊢ if ( 𝑧 = 𝑋 , ( 𝑁 ‘ 𝑌 ) , ( 𝐺 ‘ 𝑧 ) ) ∈ V |
11 |
10 7
|
dmmpti |
⊢ dom 𝐹 = 𝑆 |
12 |
11
|
difeq1i |
⊢ ( dom 𝐹 ∖ ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝑆 ∖ ( 𝑆 ∖ { 𝑋 } ) ) |
13 |
|
snssi |
⊢ ( 𝑋 ∈ 𝑆 → { 𝑋 } ⊆ 𝑆 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) → { 𝑋 } ⊆ 𝑆 ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → { 𝑋 } ⊆ 𝑆 ) |
16 |
|
dfss4 |
⊢ ( { 𝑋 } ⊆ 𝑆 ↔ ( 𝑆 ∖ ( 𝑆 ∖ { 𝑋 } ) ) = { 𝑋 } ) |
17 |
15 16
|
sylib |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → ( 𝑆 ∖ ( 𝑆 ∖ { 𝑋 } ) ) = { 𝑋 } ) |
18 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
19 |
17 18
|
eqeltrdi |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → ( 𝑆 ∖ ( 𝑆 ∖ { 𝑋 } ) ) ∈ Fin ) |
20 |
12 19
|
eqeltrid |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → ( dom 𝐹 ∖ ( 𝑆 ∖ { 𝑋 } ) ) ∈ Fin ) |
21 |
1 2 3 4 5 6 7
|
lincext1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ) → 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) |
22 |
21
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) |
23 |
|
elmapfun |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → Fun 𝐹 ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → Fun 𝐹 ) |
25 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) → 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) |
26 |
7
|
fdmdifeqresdif |
⊢ ( 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
27 |
25 26
|
syl |
⊢ ( 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
28 |
27
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
29 |
28
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → 𝐺 = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
30 |
|
simp3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 ) |
31 |
4
|
fvexi |
⊢ 0 ∈ V |
32 |
31
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → 0 ∈ V ) |
33 |
20 22 24 29 30 32
|
resfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |