Metamath Proof Explorer


Theorem lincext2

Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincext.b B = Base M
lincext.r R = Scalar M
lincext.e E = Base R
lincext.0 0 ˙ = 0 R
lincext.z Z = 0 M
lincext.n N = inv g R
lincext.f F = z S if z = X N Y G z
Assertion lincext2 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G finSupp 0 ˙ F

Proof

Step Hyp Ref Expression
1 lincext.b B = Base M
2 lincext.r R = Scalar M
3 lincext.e E = Base R
4 lincext.0 0 ˙ = 0 R
5 lincext.z Z = 0 M
6 lincext.n N = inv g R
7 lincext.f F = z S if z = X N Y G z
8 fvex N Y V
9 fvex G z V
10 8 9 ifex if z = X N Y G z V
11 10 7 dmmpti dom F = S
12 11 difeq1i dom F S X = S S X
13 snssi X S X S
14 13 3ad2ant2 Y E X S G E S X X S
15 14 3ad2ant2 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G X S
16 dfss4 X S S S X = X
17 15 16 sylib M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G S S X = X
18 snfi X Fin
19 17 18 eqeltrdi M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G S S X Fin
20 12 19 eqeltrid M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G dom F S X Fin
21 1 2 3 4 5 6 7 lincext1 M LMod S 𝒫 B Y E X S G E S X F E S
22 21 3adant3 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G F E S
23 elmapfun F E S Fun F
24 22 23 syl M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Fun F
25 elmapi G E S X G : S X E
26 7 fdmdifeqresdif G : S X E G = F S X
27 25 26 syl G E S X G = F S X
28 27 3ad2ant3 Y E X S G E S X G = F S X
29 28 3ad2ant2 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G G = F S X
30 simp3 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G finSupp 0 ˙ G
31 4 fvexi 0 ˙ V
32 31 a1i M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G 0 ˙ V
33 20 22 24 29 30 32 resfsupp M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G finSupp 0 ˙ F