Metamath Proof Explorer


Theorem lincext3

Description: Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincext.b B=BaseM
lincext.r R=ScalarM
lincext.e E=BaseR
lincext.0 0˙=0R
lincext.z Z=0M
lincext.n N=invgR
lincext.f F=zSifz=XNYGz
Assertion lincext3 MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXFlinCMS=Z

Proof

Step Hyp Ref Expression
1 lincext.b B=BaseM
2 lincext.r R=ScalarM
3 lincext.e E=BaseR
4 lincext.0 0˙=0R
5 lincext.z Z=0M
6 lincext.n N=invgR
7 lincext.f F=zSifz=XNYGz
8 simp1l MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXMLMod
9 simp1r MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXS𝒫B
10 simp2 YEXSGESXXS
11 10 3ad2ant2 MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXXS
12 1 2 3 4 5 6 7 lincext1 MLModS𝒫BYEXSGESXFES
13 12 3adant3 MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXFES
14 1 2 3 4 5 6 7 lincext2 MLModS𝒫BYEXSGESXfinSupp0˙GfinSupp0˙F
15 14 3adant3r MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXfinSupp0˙F
16 elmapi GESXG:SXE
17 7 fdmdifeqresdif G:SXEG=FSX
18 16 17 syl GESXG=FSX
19 18 3ad2ant3 YEXSGESXG=FSX
20 19 3ad2ant2 MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXG=FSX
21 eqid M=M
22 eqid +M=+M
23 1 2 3 21 22 4 lincdifsn MLModS𝒫BXSFESfinSupp0˙FG=FSXFlinCMS=GlinCMSX+MFXMX
24 8 9 11 13 15 20 23 syl321anc MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXFlinCMS=GlinCMSX+MFXMX
25 oveq1 GlinCMSX=YMXGlinCMSX+MFXMX=YMX+MFXMX
26 25 eqcoms YMX=GlinCMSXGlinCMSX+MFXMX=YMX+MFXMX
27 26 adantl finSupp0˙GYMX=GlinCMSXGlinCMSX+MFXMX=YMX+MFXMX
28 27 3ad2ant3 MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXGlinCMSX+MFXMX=YMX+MFXMX
29 eqid invgM=invgM
30 simpll MLModS𝒫BYEXSGESXMLMod
31 elelpwi XSS𝒫BXB
32 31 expcom S𝒫BXSXB
33 32 adantl MLModS𝒫BXSXB
34 33 com12 XSMLModS𝒫BXB
35 34 3ad2ant2 YEXSGESXMLModS𝒫BXB
36 35 impcom MLModS𝒫BYEXSGESXXB
37 simpr1 MLModS𝒫BYEXSGESXYE
38 1 2 21 29 3 6 30 36 37 lmodvsneg MLModS𝒫BYEXSGESXinvgMYMX=NYMX
39 iftrue z=Xifz=XNYGz=NY
40 10 adantl MLModS𝒫BYEXSGESXXS
41 fvexd MLModS𝒫BYEXSGESXNYV
42 7 39 40 41 fvmptd3 MLModS𝒫BYEXSGESXFX=NY
43 42 eqcomd MLModS𝒫BYEXSGESXNY=FX
44 43 oveq1d MLModS𝒫BYEXSGESXNYMX=FXMX
45 38 44 eqtr2d MLModS𝒫BYEXSGESXFXMX=invgMYMX
46 45 oveq2d MLModS𝒫BYEXSGESXYMX+MFXMX=YMX+MinvgMYMX
47 1 2 21 3 lmodvscl MLModYEXBYMXB
48 30 37 36 47 syl3anc MLModS𝒫BYEXSGESXYMXB
49 1 22 5 29 lmodvnegid MLModYMXBYMX+MinvgMYMX=Z
50 30 48 49 syl2anc MLModS𝒫BYEXSGESXYMX+MinvgMYMX=Z
51 46 50 eqtrd MLModS𝒫BYEXSGESXYMX+MFXMX=Z
52 51 3adant3 MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXYMX+MFXMX=Z
53 28 52 eqtrd MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXGlinCMSX+MFXMX=Z
54 24 53 eqtrd MLModS𝒫BYEXSGESXfinSupp0˙GYMX=GlinCMSXFlinCMS=Z