Metamath Proof Explorer


Theorem lincext3

Description: Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincext.b B = Base M
lincext.r R = Scalar M
lincext.e E = Base R
lincext.0 0 ˙ = 0 R
lincext.z Z = 0 M
lincext.n N = inv g R
lincext.f F = z S if z = X N Y G z
Assertion lincext3 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X F linC M S = Z

Proof

Step Hyp Ref Expression
1 lincext.b B = Base M
2 lincext.r R = Scalar M
3 lincext.e E = Base R
4 lincext.0 0 ˙ = 0 R
5 lincext.z Z = 0 M
6 lincext.n N = inv g R
7 lincext.f F = z S if z = X N Y G z
8 simp1l M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X M LMod
9 simp1r M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X S 𝒫 B
10 simp2 Y E X S G E S X X S
11 10 3ad2ant2 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X X S
12 1 2 3 4 5 6 7 lincext1 M LMod S 𝒫 B Y E X S G E S X F E S
13 12 3adant3 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X F E S
14 1 2 3 4 5 6 7 lincext2 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G finSupp 0 ˙ F
15 14 3adant3r M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X finSupp 0 ˙ F
16 elmapi G E S X G : S X E
17 7 fdmdifeqresdif G : S X E G = F S X
18 16 17 syl G E S X G = F S X
19 18 3ad2ant3 Y E X S G E S X G = F S X
20 19 3ad2ant2 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X G = F S X
21 eqid M = M
22 eqid + M = + M
23 1 2 3 21 22 4 lincdifsn M LMod S 𝒫 B X S F E S finSupp 0 ˙ F G = F S X F linC M S = G linC M S X + M F X M X
24 8 9 11 13 15 20 23 syl321anc M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X F linC M S = G linC M S X + M F X M X
25 oveq1 G linC M S X = Y M X G linC M S X + M F X M X = Y M X + M F X M X
26 25 eqcoms Y M X = G linC M S X G linC M S X + M F X M X = Y M X + M F X M X
27 26 adantl finSupp 0 ˙ G Y M X = G linC M S X G linC M S X + M F X M X = Y M X + M F X M X
28 27 3ad2ant3 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X G linC M S X + M F X M X = Y M X + M F X M X
29 eqid inv g M = inv g M
30 simpll M LMod S 𝒫 B Y E X S G E S X M LMod
31 elelpwi X S S 𝒫 B X B
32 31 expcom S 𝒫 B X S X B
33 32 adantl M LMod S 𝒫 B X S X B
34 33 com12 X S M LMod S 𝒫 B X B
35 34 3ad2ant2 Y E X S G E S X M LMod S 𝒫 B X B
36 35 impcom M LMod S 𝒫 B Y E X S G E S X X B
37 simpr1 M LMod S 𝒫 B Y E X S G E S X Y E
38 1 2 21 29 3 6 30 36 37 lmodvsneg M LMod S 𝒫 B Y E X S G E S X inv g M Y M X = N Y M X
39 iftrue z = X if z = X N Y G z = N Y
40 10 adantl M LMod S 𝒫 B Y E X S G E S X X S
41 fvexd M LMod S 𝒫 B Y E X S G E S X N Y V
42 7 39 40 41 fvmptd3 M LMod S 𝒫 B Y E X S G E S X F X = N Y
43 42 eqcomd M LMod S 𝒫 B Y E X S G E S X N Y = F X
44 43 oveq1d M LMod S 𝒫 B Y E X S G E S X N Y M X = F X M X
45 38 44 eqtr2d M LMod S 𝒫 B Y E X S G E S X F X M X = inv g M Y M X
46 45 oveq2d M LMod S 𝒫 B Y E X S G E S X Y M X + M F X M X = Y M X + M inv g M Y M X
47 1 2 21 3 lmodvscl M LMod Y E X B Y M X B
48 30 37 36 47 syl3anc M LMod S 𝒫 B Y E X S G E S X Y M X B
49 1 22 5 29 lmodvnegid M LMod Y M X B Y M X + M inv g M Y M X = Z
50 30 48 49 syl2anc M LMod S 𝒫 B Y E X S G E S X Y M X + M inv g M Y M X = Z
51 46 50 eqtrd M LMod S 𝒫 B Y E X S G E S X Y M X + M F X M X = Z
52 51 3adant3 M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X Y M X + M F X M X = Z
53 28 52 eqtrd M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X G linC M S X + M F X M X = Z
54 24 53 eqtrd M LMod S 𝒫 B Y E X S G E S X finSupp 0 ˙ G Y M X = G linC M S X F linC M S = Z