| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindslinind.r |
|
| 2 |
|
lindslinind.b |
|
| 3 |
|
lindslinind.0 |
|
| 4 |
|
lindslinind.z |
|
| 5 |
|
elpwi |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
|
simpr |
|
| 8 |
7
|
anim2i |
|
| 9 |
8
|
ancomd |
|
| 10 |
9
|
ad2antrr |
|
| 11 |
|
eldifi |
|
| 12 |
11
|
adantl |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simprl |
|
| 18 |
14 16 17
|
3jca |
|
| 19 |
|
simprrl |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
20 1 2 3 4 21 22
|
lincext2 |
|
| 24 |
10 18 19 23
|
syl3anc |
|
| 25 |
8
|
adantr |
|
| 26 |
25
|
ancomd |
|
| 27 |
26
|
adantr |
|
| 28 |
20 1 2 3 4 21 22
|
lincext1 |
|
| 29 |
27 18 28
|
syl2anc |
|
| 30 |
|
breq1 |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
|
fveq1 |
|
| 35 |
34
|
eqeq1d |
|
| 36 |
35
|
ralbidv |
|
| 37 |
33 36
|
imbi12d |
|
| 38 |
37
|
rspcv |
|
| 39 |
29 38
|
syl |
|
| 40 |
39
|
exp4a |
|
| 41 |
24 40
|
mpid |
|
| 42 |
|
simprr |
|
| 43 |
20 1 2 3 4 21 22
|
lincext3 |
|
| 44 |
10 18 42 43
|
syl3anc |
|
| 45 |
|
fveqeq2 |
|
| 46 |
45
|
rspcv |
|
| 47 |
16 46
|
syl |
|
| 48 |
|
eqidd |
|
| 49 |
|
iftrue |
|
| 50 |
49
|
adantl |
|
| 51 |
|
fvexd |
|
| 52 |
48 50 15 51
|
fvmptd |
|
| 53 |
52
|
adantr |
|
| 54 |
53
|
eqeq1d |
|
| 55 |
1
|
lmodfgrp |
|
| 56 |
2 3 21
|
grpinvnzcl |
|
| 57 |
|
eldif |
|
| 58 |
|
fvex |
|
| 59 |
58
|
elsn |
|
| 60 |
|
pm2.21 |
|
| 61 |
60
|
com25 |
|
| 62 |
59 61
|
sylnbi |
|
| 63 |
57 62
|
simplbiim |
|
| 64 |
56 63
|
syl |
|
| 65 |
64
|
ex |
|
| 66 |
55 65
|
syl |
|
| 67 |
66
|
com24 |
|
| 68 |
67
|
impcom |
|
| 69 |
68
|
impcom |
|
| 70 |
69
|
com13 |
|
| 71 |
70
|
imp |
|
| 72 |
71
|
impcom |
|
| 73 |
72
|
adantr |
|
| 74 |
54 73
|
sylbid |
|
| 75 |
47 74
|
syld |
|
| 76 |
44 75
|
embantd |
|
| 77 |
41 76
|
syldc |
|
| 78 |
77
|
exp5j |
|
| 79 |
78
|
impcom |
|
| 80 |
79
|
impcom |
|
| 81 |
80
|
imp |
|
| 82 |
81
|
expdimp |
|
| 83 |
82
|
expd |
|
| 84 |
83
|
impcom |
|
| 85 |
84
|
pm2.01d |
|
| 86 |
85
|
olcd |
|
| 87 |
|
animorl |
|
| 88 |
86 87
|
pm2.61ian |
|
| 89 |
88
|
ralrimiva |
|
| 90 |
|
ralnex |
|
| 91 |
|
ianor |
|
| 92 |
91
|
ralbii |
|
| 93 |
90 92
|
bitr3i |
|
| 94 |
89 93
|
sylibr |
|
| 95 |
94
|
intnand |
|
| 96 |
7
|
ad2antrr |
|
| 97 |
|
difexg |
|
| 98 |
97
|
ad2antrr |
|
| 99 |
5
|
ssdifssd |
|
| 100 |
99
|
ad2antrl |
|
| 101 |
98 100
|
elpwd |
|
| 102 |
101
|
adantr |
|
| 103 |
20
|
lspeqlco |
|
| 104 |
103
|
eleq2d |
|
| 105 |
104
|
bicomd |
|
| 106 |
96 102 105
|
syl2anc |
|
| 107 |
7
|
adantr |
|
| 108 |
|
difexg |
|
| 109 |
108 99
|
elpwd |
|
| 110 |
109
|
ad2antrl |
|
| 111 |
107 110
|
jca |
|
| 112 |
111
|
adantr |
|
| 113 |
20 1 2
|
lcoval |
|
| 114 |
3
|
eqcomi |
|
| 115 |
114
|
breq2i |
|
| 116 |
115
|
anbi1i |
|
| 117 |
116
|
rexbii |
|
| 118 |
117
|
anbi2i |
|
| 119 |
113 118
|
bitrdi |
|
| 120 |
112 119
|
syl |
|
| 121 |
106 120
|
bitrd |
|
| 122 |
95 121
|
mtbird |
|
| 123 |
122
|
ralrimivva |
|
| 124 |
6 123
|
jca |
|
| 125 |
124
|
ex |
|