| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindslinind.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 2 |
|
lindslinind.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
lindslinind.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
lindslinind.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 5 |
|
lindslinind.y |
⊢ 𝑌 = ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 6 |
|
lindslinind.g |
⊢ 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) ) |
| 7 |
1
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Grp ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → 𝑅 ∈ Grp ) |
| 9 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) → 𝑓 : 𝑆 ⟶ 𝐵 ) |
| 10 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 |
10
|
a1d |
⊢ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 12 |
11
|
ex |
⊢ ( 𝑓 : 𝑆 ⟶ 𝐵 → ( 𝑥 ∈ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 13 |
9 12
|
syl |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) → ( 𝑥 ∈ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 14 |
13
|
com13 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑥 ∈ 𝑆 → ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 15 |
14
|
3imp |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 17 |
2 16
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 18 |
8 15 17
|
syl2an |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 19 |
5 18
|
eqeltrid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) ) → 𝑌 ∈ 𝐵 ) |