Step |
Hyp |
Ref |
Expression |
1 |
|
lindslinind.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
2 |
|
lindslinind.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
lindslinind.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
lindslinind.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
5 |
|
lindslinind.y |
⊢ 𝑌 = ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
6 |
|
lindslinind.g |
⊢ 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) ) |
7 |
1
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Grp ) |
8 |
7
|
adantl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) → 𝑅 ∈ Grp ) |
9 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) → 𝑓 : 𝑆 ⟶ 𝐵 ) |
10 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
10
|
a1d |
⊢ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
12 |
11
|
ex |
⊢ ( 𝑓 : 𝑆 ⟶ 𝐵 → ( 𝑥 ∈ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
13 |
9 12
|
syl |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) → ( 𝑥 ∈ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
14 |
13
|
com13 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑥 ∈ 𝑆 → ( 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
15 |
14
|
3imp |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
17 |
2 16
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ 𝐵 ) |
18 |
8 15 17
|
syl2an |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ 𝐵 ) |
19 |
5 18
|
eqeltrid |
⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ) ) → 𝑌 ∈ 𝐵 ) |