Metamath Proof Explorer


Theorem lindslinindimp2lem1

Description: Lemma 1 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019)

Ref Expression
Hypotheses lindslinind.r 𝑅 = ( Scalar ‘ 𝑀 )
lindslinind.b 𝐵 = ( Base ‘ 𝑅 )
lindslinind.0 0 = ( 0g𝑅 )
lindslinind.z 𝑍 = ( 0g𝑀 )
lindslinind.y 𝑌 = ( ( invg𝑅 ) ‘ ( 𝑓𝑥 ) )
lindslinind.g 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) )
Assertion lindslinindimp2lem1 ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆𝑓 ∈ ( 𝐵m 𝑆 ) ) ) → 𝑌𝐵 )

Proof

Step Hyp Ref Expression
1 lindslinind.r 𝑅 = ( Scalar ‘ 𝑀 )
2 lindslinind.b 𝐵 = ( Base ‘ 𝑅 )
3 lindslinind.0 0 = ( 0g𝑅 )
4 lindslinind.z 𝑍 = ( 0g𝑀 )
5 lindslinind.y 𝑌 = ( ( invg𝑅 ) ‘ ( 𝑓𝑥 ) )
6 lindslinind.g 𝐺 = ( 𝑓 ↾ ( 𝑆 ∖ { 𝑥 } ) )
7 1 lmodfgrp ( 𝑀 ∈ LMod → 𝑅 ∈ Grp )
8 7 adantl ( ( 𝑆𝑉𝑀 ∈ LMod ) → 𝑅 ∈ Grp )
9 elmapi ( 𝑓 ∈ ( 𝐵m 𝑆 ) → 𝑓 : 𝑆𝐵 )
10 ffvelrn ( ( 𝑓 : 𝑆𝐵𝑥𝑆 ) → ( 𝑓𝑥 ) ∈ 𝐵 )
11 10 a1d ( ( 𝑓 : 𝑆𝐵𝑥𝑆 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓𝑥 ) ∈ 𝐵 ) )
12 11 ex ( 𝑓 : 𝑆𝐵 → ( 𝑥𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓𝑥 ) ∈ 𝐵 ) ) )
13 9 12 syl ( 𝑓 ∈ ( 𝐵m 𝑆 ) → ( 𝑥𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑓𝑥 ) ∈ 𝐵 ) ) )
14 13 com13 ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑥𝑆 → ( 𝑓 ∈ ( 𝐵m 𝑆 ) → ( 𝑓𝑥 ) ∈ 𝐵 ) ) )
15 14 3imp ( ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆𝑓 ∈ ( 𝐵m 𝑆 ) ) → ( 𝑓𝑥 ) ∈ 𝐵 )
16 eqid ( invg𝑅 ) = ( invg𝑅 )
17 2 16 grpinvcl ( ( 𝑅 ∈ Grp ∧ ( 𝑓𝑥 ) ∈ 𝐵 ) → ( ( invg𝑅 ) ‘ ( 𝑓𝑥 ) ) ∈ 𝐵 )
18 8 15 17 syl2an ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆𝑓 ∈ ( 𝐵m 𝑆 ) ) ) → ( ( invg𝑅 ) ‘ ( 𝑓𝑥 ) ) ∈ 𝐵 )
19 5 18 eqeltrid ( ( ( 𝑆𝑉𝑀 ∈ LMod ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝑥𝑆𝑓 ∈ ( 𝐵m 𝑆 ) ) ) → 𝑌𝐵 )