Step |
Hyp |
Ref |
Expression |
1 |
|
lindslinind.r |
|- R = ( Scalar ` M ) |
2 |
|
lindslinind.b |
|- B = ( Base ` R ) |
3 |
|
lindslinind.0 |
|- .0. = ( 0g ` R ) |
4 |
|
lindslinind.z |
|- Z = ( 0g ` M ) |
5 |
|
lindslinind.y |
|- Y = ( ( invg ` R ) ` ( f ` x ) ) |
6 |
|
lindslinind.g |
|- G = ( f |` ( S \ { x } ) ) |
7 |
1
|
lmodfgrp |
|- ( M e. LMod -> R e. Grp ) |
8 |
7
|
adantl |
|- ( ( S e. V /\ M e. LMod ) -> R e. Grp ) |
9 |
|
elmapi |
|- ( f e. ( B ^m S ) -> f : S --> B ) |
10 |
|
ffvelrn |
|- ( ( f : S --> B /\ x e. S ) -> ( f ` x ) e. B ) |
11 |
10
|
a1d |
|- ( ( f : S --> B /\ x e. S ) -> ( S C_ ( Base ` M ) -> ( f ` x ) e. B ) ) |
12 |
11
|
ex |
|- ( f : S --> B -> ( x e. S -> ( S C_ ( Base ` M ) -> ( f ` x ) e. B ) ) ) |
13 |
9 12
|
syl |
|- ( f e. ( B ^m S ) -> ( x e. S -> ( S C_ ( Base ` M ) -> ( f ` x ) e. B ) ) ) |
14 |
13
|
com13 |
|- ( S C_ ( Base ` M ) -> ( x e. S -> ( f e. ( B ^m S ) -> ( f ` x ) e. B ) ) ) |
15 |
14
|
3imp |
|- ( ( S C_ ( Base ` M ) /\ x e. S /\ f e. ( B ^m S ) ) -> ( f ` x ) e. B ) |
16 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
17 |
2 16
|
grpinvcl |
|- ( ( R e. Grp /\ ( f ` x ) e. B ) -> ( ( invg ` R ) ` ( f ` x ) ) e. B ) |
18 |
8 15 17
|
syl2an |
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S /\ f e. ( B ^m S ) ) ) -> ( ( invg ` R ) ` ( f ` x ) ) e. B ) |
19 |
5 18
|
eqeltrid |
|- ( ( ( S e. V /\ M e. LMod ) /\ ( S C_ ( Base ` M ) /\ x e. S /\ f e. ( B ^m S ) ) ) -> Y e. B ) |