| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ral0 | ⊢ ∀ 𝑥  ∈  ∅ ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 2 | 1 | 2a1i | ⊢ ( 𝑀  ∈  𝑉  →  ( ( ∅  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( ∅ (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 |  | breq1 | ⊢ ( 𝑓  =  ∅  →  ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ↔  ∅  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑓  =  ∅  →  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( ∅ (  linC  ‘ 𝑀 ) ∅ ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑓  =  ∅  →  ( ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 )  ↔  ( ∅ (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 7 | 4 6 | anbi12d | ⊢ ( 𝑓  =  ∅  →  ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  ↔  ( ∅  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( ∅ (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑓  =  ∅  →  ( 𝑓 ‘ 𝑥 )  =  ( ∅ ‘ 𝑥 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑓  =  ∅  →  ( ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ↔  ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑓  =  ∅  →  ( ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ↔  ∀ 𝑥  ∈  ∅ ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) | 
						
							| 11 | 7 10 | imbi12d | ⊢ ( 𝑓  =  ∅  →  ( ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )  ↔  ( ( ∅  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( ∅ (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) | 
						
							| 12 | 11 | ralsng | ⊢ ( ∅  ∈  V  →  ( ∀ 𝑓  ∈  { ∅ } ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )  ↔  ( ( ∅  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( ∅ (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) | 
						
							| 13 | 3 12 | mp1i | ⊢ ( 𝑀  ∈  𝑉  →  ( ∀ 𝑓  ∈  { ∅ } ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )  ↔  ( ( ∅  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( ∅ (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( ∅ ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) | 
						
							| 14 | 2 13 | mpbird | ⊢ ( 𝑀  ∈  𝑉  →  ∀ 𝑓  ∈  { ∅ } ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) | 
						
							| 15 |  | fvex | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∈  V | 
						
							| 16 |  | map0e | ⊢ ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ∈  V  →  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ )  =  1o ) | 
						
							| 17 | 15 16 | mp1i | ⊢ ( 𝑀  ∈  𝑉  →  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ )  =  1o ) | 
						
							| 18 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( 𝑀  ∈  𝑉  →  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 20 | 14 19 | raleqtrrdv | ⊢ ( 𝑀  ∈  𝑉  →  ∀ 𝑓  ∈  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ ) ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) | 
						
							| 21 |  | 0elpw | ⊢ ∅  ∈  𝒫  ( Base ‘ 𝑀 ) | 
						
							| 22 | 20 21 | jctil | ⊢ ( 𝑀  ∈  𝑉  →  ( ∅  ∈  𝒫  ( Base ‘ 𝑀 )  ∧  ∀ 𝑓  ∈  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ ) ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 25 |  | eqid | ⊢ ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝑀 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) )  =  ( Base ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 28 | 23 24 25 26 27 | islininds | ⊢ ( ( ∅  ∈  V  ∧  𝑀  ∈  𝑉 )  →  ( ∅  linIndS  𝑀  ↔  ( ∅  ∈  𝒫  ( Base ‘ 𝑀 )  ∧  ∀ 𝑓  ∈  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ ) ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 29 | 3 28 | mpan | ⊢ ( 𝑀  ∈  𝑉  →  ( ∅  linIndS  𝑀  ↔  ( ∅  ∈  𝒫  ( Base ‘ 𝑀 )  ∧  ∀ 𝑓  ∈  ( ( Base ‘ ( Scalar ‘ 𝑀 ) )  ↑m  ∅ ) ( ( 𝑓  finSupp  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  ∧  ( 𝑓 (  linC  ‘ 𝑀 ) ∅ )  =  ( 0g ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ∅ ( 𝑓 ‘ 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 30 | 22 29 | mpbird | ⊢ ( 𝑀  ∈  𝑉  →  ∅  linIndS  𝑀 ) |