Metamath Proof Explorer


Theorem linds0

Description: The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion linds0 ( 𝑀𝑉 → ∅ linIndS 𝑀 )

Proof

Step Hyp Ref Expression
1 ral0 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) )
2 1 2a1i ( 𝑀𝑉 → ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
3 0ex ∅ ∈ V
4 breq1 ( 𝑓 = ∅ → ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
5 oveq1 ( 𝑓 = ∅ → ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( ∅ ( linC ‘ 𝑀 ) ∅ ) )
6 5 eqeq1d ( 𝑓 = ∅ → ( ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ↔ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) )
7 4 6 anbi12d ( 𝑓 = ∅ → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) ↔ ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) ) )
8 fveq1 ( 𝑓 = ∅ → ( 𝑓𝑥 ) = ( ∅ ‘ 𝑥 ) )
9 8 eqeq1d ( 𝑓 = ∅ → ( ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
10 9 ralbidv ( 𝑓 = ∅ → ( ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
11 7 10 imbi12d ( 𝑓 = ∅ → ( ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
12 11 ralsng ( ∅ ∈ V → ( ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
13 3 12 mp1i ( 𝑀𝑉 → ( ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
14 2 13 mpbird ( 𝑀𝑉 → ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
15 fvex ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V
16 map0e ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o )
17 15 16 mp1i ( 𝑀𝑉 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o )
18 df1o2 1o = { ∅ }
19 17 18 eqtrdi ( 𝑀𝑉 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = { ∅ } )
20 19 raleqdv ( 𝑀𝑉 → ( ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
21 14 20 mpbird ( 𝑀𝑉 → ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
22 0elpw ∅ ∈ 𝒫 ( Base ‘ 𝑀 )
23 21 22 jctil ( 𝑀𝑉 → ( ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
24 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
25 eqid ( 0g𝑀 ) = ( 0g𝑀 )
26 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
27 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
28 eqid ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) )
29 24 25 26 27 28 islininds ( ( ∅ ∈ V ∧ 𝑀𝑉 ) → ( ∅ linIndS 𝑀 ↔ ( ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) )
30 3 29 mpan ( 𝑀𝑉 → ( ∅ linIndS 𝑀 ↔ ( ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) )
31 23 30 mpbird ( 𝑀𝑉 → ∅ linIndS 𝑀 )