Step |
Hyp |
Ref |
Expression |
1 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
2 |
1
|
2a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
|
breq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( ∅ ( linC ‘ 𝑀 ) ∅ ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ↔ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) ) |
7 |
4 6
|
anbi12d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) ↔ ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) ) ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 ‘ 𝑥 ) = ( ∅ ‘ 𝑥 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑓 = ∅ → ( ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑓 = ∅ → ( ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
11 |
7 10
|
imbi12d |
⊢ ( 𝑓 = ∅ → ( ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
12 |
11
|
ralsng |
⊢ ( ∅ ∈ V → ( ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
13 |
3 12
|
mp1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( ∅ finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ∅ ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
14 |
2 13
|
mpbird |
⊢ ( 𝑀 ∈ 𝑉 → ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
15 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
16 |
|
map0e |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o ) |
17 |
15 16
|
mp1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = 1o ) |
18 |
|
df1o2 |
⊢ 1o = { ∅ } |
19 |
17 18
|
eqtrdi |
⊢ ( 𝑀 ∈ 𝑉 → ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) = { ∅ } ) |
20 |
19
|
raleqdv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ∀ 𝑓 ∈ { ∅ } ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
21 |
14 20
|
mpbird |
⊢ ( 𝑀 ∈ 𝑉 → ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
22 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) |
23 |
21 22
|
jctil |
⊢ ( 𝑀 ∈ 𝑉 → ( ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
27 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
29 |
24 25 26 27 28
|
islininds |
⊢ ( ( ∅ ∈ V ∧ 𝑀 ∈ 𝑉 ) → ( ∅ linIndS 𝑀 ↔ ( ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) ) |
30 |
3 29
|
mpan |
⊢ ( 𝑀 ∈ 𝑉 → ( ∅ linIndS 𝑀 ↔ ( ∅ ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ∅ ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) ∅ ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) ) |
31 |
23 30
|
mpbird |
⊢ ( 𝑀 ∈ 𝑉 → ∅ linIndS 𝑀 ) |