Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
2 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
3 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
4 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑦 → ( 𝑠 = ( 0g ‘ 𝑀 ) ↔ 𝑦 = ( 0g ‘ 𝑀 ) ) ) |
6 |
5
|
ifbid |
⊢ ( 𝑠 = 𝑦 → if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) = if ( 𝑦 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
7 |
6
|
cbvmptv |
⊢ ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ if ( 𝑦 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
8 |
1 2 3 4 7
|
mptcfsupp |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
9 |
8
|
3adant1r |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 𝑀 ∈ LMod ) |
11 |
|
simp2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
13 |
|
eqid |
⊢ ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
14 |
1 2 3 4 12 13
|
linc0scn0 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) |
15 |
10 11 14
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) |
16 |
|
simp3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 0g ‘ 𝑀 ) ∈ 𝑆 ) |
17 |
|
fveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝑀 ) → ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g ‘ 𝑀 ) ) ) |
18 |
17
|
neeq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝑀 ) → ( ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) ∧ 𝑥 = ( 0g ‘ 𝑀 ) ) → ( ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
20 |
|
iftrue |
⊢ ( 𝑠 = ( 0g ‘ 𝑀 ) → if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) |
21 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) |
22 |
13 20 16 21
|
fvmptd3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) |
23 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
24 |
23
|
anim1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
27 |
26 4 3
|
ring1ne0 |
⊢ ( ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
28 |
25 27
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
29 |
22 28
|
eqnetrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
30 |
16 19 29
|
rspcedvd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ∃ 𝑥 ∈ 𝑆 ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
31 |
2 26 4
|
lmod1cl |
⊢ ( 𝑀 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
32 |
2 26 3
|
lmod0cl |
⊢ ( 𝑀 ∈ LMod → ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
33 |
31 32
|
ifcld |
⊢ ( 𝑀 ∈ LMod → if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) → if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) ∧ 𝑠 ∈ 𝑆 ) → if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
37 |
36
|
fmpttd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑆 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
38 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) |
39 |
38 11
|
elmapd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ↔ ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑆 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
40 |
37 39
|
mpbird |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ) |
41 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
42 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ↔ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) ) |
44 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ) |
45 |
44
|
neeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∃ 𝑥 ∈ 𝑆 ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
47 |
41 43 46
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
48 |
47
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) ∧ 𝑓 = ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
49 |
40 48
|
rspcedv |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( ( 𝑠 ∈ 𝑆 ↦ if ( 𝑠 = ( 0g ‘ 𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
50 |
9 15 30 49
|
mp3and |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
51 |
1 12 2 26 3
|
islindeps |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 linDepS 𝑀 ↔ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
52 |
10 11 51
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 𝑆 linDepS 𝑀 ↔ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
53 |
50 52
|
mpbird |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 ) |