Metamath Proof Explorer


Theorem el0ldep

Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion el0ldep ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
2 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
3 eqid ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) )
4 eqid ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) )
5 eqeq1 ( 𝑠 = 𝑦 → ( 𝑠 = ( 0g𝑀 ) ↔ 𝑦 = ( 0g𝑀 ) ) )
6 5 ifbid ( 𝑠 = 𝑦 → if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) = if ( 𝑦 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
7 6 cbvmptv ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) = ( 𝑦𝑆 ↦ if ( 𝑦 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
8 1 2 3 4 7 mptcfsupp ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
9 8 3adant1r ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
10 simp1l ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑀 ∈ LMod )
11 simp2 ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) )
12 eqid ( 0g𝑀 ) = ( 0g𝑀 )
13 eqid ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
14 1 2 3 4 12 13 linc0scn0 ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) )
15 10 11 14 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) )
16 simp3 ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 0g𝑀 ) ∈ 𝑆 )
17 fveq2 ( 𝑥 = ( 0g𝑀 ) → ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g𝑀 ) ) )
18 17 neeq1d ( 𝑥 = ( 0g𝑀 ) → ( ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
19 18 adantl ( ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) ∧ 𝑥 = ( 0g𝑀 ) ) → ( ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
20 iftrue ( 𝑠 = ( 0g𝑀 ) → if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) )
21 fvexd ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ V )
22 13 20 16 21 fvmptd3 ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) )
23 2 lmodring ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Ring )
24 23 anim1i ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
25 24 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
26 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
27 26 4 3 ring1ne0 ( ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
28 25 27 syl ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
29 22 28 eqnetrd ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ ( 0g𝑀 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
30 16 19 29 rspcedvd ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ∃ 𝑥𝑆 ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) )
31 2 26 4 lmod1cl ( 𝑀 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
32 2 26 3 lmod0cl ( 𝑀 ∈ LMod → ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
33 31 32 ifcld ( 𝑀 ∈ LMod → if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
34 33 adantr ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) → if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
35 34 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
36 35 adantr ( ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) ∧ 𝑠𝑆 ) → if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
37 36 fmpttd ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑆 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
38 fvexd ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V )
39 38 11 elmapd ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ↔ ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) : 𝑆 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
40 37 39 mpbird ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) )
41 breq1 ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
42 oveq1 ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) )
43 42 eqeq1d ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ↔ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ) )
44 fveq1 ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( 𝑓𝑥 ) = ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) )
45 44 neeq1d ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
46 45 rexbidv ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ↔ ∃ 𝑥𝑆 ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
47 41 43 46 3anbi123d ( 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
48 47 adantl ( ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) ∧ 𝑓 = ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ↔ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
49 40 48 rspcedv ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( ( 𝑠𝑆 ↦ if ( 𝑠 = ( 0g𝑀 ) , ( 1r ‘ ( Scalar ‘ 𝑀 ) ) , ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) → ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
50 9 15 30 49 mp3and ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) )
51 1 12 2 26 3 islindeps ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 linDepS 𝑀 ↔ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
52 10 11 51 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 𝑆 linDepS 𝑀 ↔ ∃ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ∧ ∃ 𝑥𝑆 ( 𝑓𝑥 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
53 50 52 mpbird ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 )