Metamath Proof Explorer


Theorem el0ldepsnzr

Description: A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019) (Revised by AV, 27-Apr-2019)

Ref Expression
Assertion el0ldepsnzr ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑀 ∈ LMod )
2 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
3 2 isnzr2hash ( ( Scalar ‘ 𝑀 ) ∈ NzRing ↔ ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
4 3 simprbi ( ( Scalar ‘ 𝑀 ) ∈ NzRing → 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
5 4 adantl ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) → 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
6 5 3ad2ant1 ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
7 1 6 jca ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
8 el0ldep ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 )
9 7 8 syld3an1 ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 )