Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 𝑀 ∈ LMod ) |
2 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
3 |
2
|
isnzr2hash |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ NzRing ↔ ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
4 |
3
|
simprbi |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ NzRing → 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) → 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
7 |
1 6
|
jca |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
8 |
|
el0ldep |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 1 < ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 ) |
9 |
7 8
|
syld3an1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) → 𝑆 linDepS 𝑀 ) |