Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|- ( ( ( M e. LMod /\ ( Scalar ` M ) e. NzRing ) /\ S e. ~P ( Base ` M ) /\ ( 0g ` M ) e. S ) -> M e. LMod ) |
2 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
3 |
2
|
isnzr2hash |
|- ( ( Scalar ` M ) e. NzRing <-> ( ( Scalar ` M ) e. Ring /\ 1 < ( # ` ( Base ` ( Scalar ` M ) ) ) ) ) |
4 |
3
|
simprbi |
|- ( ( Scalar ` M ) e. NzRing -> 1 < ( # ` ( Base ` ( Scalar ` M ) ) ) ) |
5 |
4
|
adantl |
|- ( ( M e. LMod /\ ( Scalar ` M ) e. NzRing ) -> 1 < ( # ` ( Base ` ( Scalar ` M ) ) ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( ( M e. LMod /\ ( Scalar ` M ) e. NzRing ) /\ S e. ~P ( Base ` M ) /\ ( 0g ` M ) e. S ) -> 1 < ( # ` ( Base ` ( Scalar ` M ) ) ) ) |
7 |
1 6
|
jca |
|- ( ( ( M e. LMod /\ ( Scalar ` M ) e. NzRing ) /\ S e. ~P ( Base ` M ) /\ ( 0g ` M ) e. S ) -> ( M e. LMod /\ 1 < ( # ` ( Base ` ( Scalar ` M ) ) ) ) ) |
8 |
|
el0ldep |
|- ( ( ( M e. LMod /\ 1 < ( # ` ( Base ` ( Scalar ` M ) ) ) ) /\ S e. ~P ( Base ` M ) /\ ( 0g ` M ) e. S ) -> S linDepS M ) |
9 |
7 8
|
syld3an1 |
|- ( ( ( M e. LMod /\ ( Scalar ` M ) e. NzRing ) /\ S e. ~P ( Base ` M ) /\ ( 0g ` M ) e. S ) -> S linDepS M ) |