Metamath Proof Explorer


Theorem el0ldepsnzr

Description: A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019) (Revised by AV, 27-Apr-2019)

Ref Expression
Assertion el0ldepsnzr M LMod Scalar M NzRing S 𝒫 Base M 0 M S S linDepS M

Proof

Step Hyp Ref Expression
1 simp1l M LMod Scalar M NzRing S 𝒫 Base M 0 M S M LMod
2 eqid Base Scalar M = Base Scalar M
3 2 isnzr2hash Scalar M NzRing Scalar M Ring 1 < Base Scalar M
4 3 simprbi Scalar M NzRing 1 < Base Scalar M
5 4 adantl M LMod Scalar M NzRing 1 < Base Scalar M
6 5 3ad2ant1 M LMod Scalar M NzRing S 𝒫 Base M 0 M S 1 < Base Scalar M
7 1 6 jca M LMod Scalar M NzRing S 𝒫 Base M 0 M S M LMod 1 < Base Scalar M
8 el0ldep M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S S linDepS M
9 7 8 syld3an1 M LMod Scalar M NzRing S 𝒫 Base M 0 M S S linDepS M