Step |
Hyp |
Ref |
Expression |
1 |
|
lindsrng01.b |
|
2 |
|
lindsrng01.r |
|
3 |
|
lindsrng01.e |
|
4 |
2 3
|
lmodsn0 |
|
5 |
3
|
fvexi |
|
6 |
|
hasheq0 |
|
7 |
5 6
|
ax-mp |
|
8 |
|
eqneqall |
|
9 |
8
|
com12 |
|
10 |
7 9
|
syl5bi |
|
11 |
4 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
12
|
com12 |
|
14 |
2
|
lmodring |
|
15 |
14
|
adantr |
|
16 |
|
eqid |
|
17 |
3 16
|
0ring |
|
18 |
15 17
|
sylan |
|
19 |
|
simpr |
|
20 |
19
|
adantr |
|
21 |
20
|
adantl |
|
22 |
|
snex |
|
23 |
20 22
|
jctil |
|
24 |
23
|
adantl |
|
25 |
|
elmapg |
|
26 |
24 25
|
syl |
|
27 |
|
fvex |
|
28 |
27
|
fconst2 |
|
29 |
|
fconstmpt |
|
30 |
29
|
eqeq2i |
|
31 |
28 30
|
bitri |
|
32 |
|
eqidd |
|
33 |
|
eqidd |
|
34 |
|
simpr |
|
35 |
|
fvexd |
|
36 |
32 33 34 35
|
fvmptd |
|
37 |
36
|
ralrimiva |
|
38 |
37
|
a1d |
|
39 |
|
breq1 |
|
40 |
|
oveq1 |
|
41 |
40
|
eqeq1d |
|
42 |
39 41
|
anbi12d |
|
43 |
|
fveq1 |
|
44 |
43
|
eqeq1d |
|
45 |
44
|
ralbidv |
|
46 |
42 45
|
imbi12d |
|
47 |
38 46
|
syl5ibrcom |
|
48 |
31 47
|
syl5bi |
|
49 |
26 48
|
sylbid |
|
50 |
49
|
ralrimiv |
|
51 |
|
oveq1 |
|
52 |
51
|
raleqdv |
|
53 |
52
|
adantr |
|
54 |
50 53
|
mpbird |
|
55 |
|
simpl |
|
56 |
55
|
ancomd |
|
57 |
56
|
adantl |
|
58 |
|
eqid |
|
59 |
1 58 2 3 16
|
islininds |
|
60 |
57 59
|
syl |
|
61 |
21 54 60
|
mpbir2and |
|
62 |
18 61
|
mpancom |
|
63 |
62
|
expcom |
|
64 |
13 63
|
jaoi |
|
65 |
64
|
expd |
|
66 |
65
|
com12 |
|
67 |
66
|
3imp |
|