| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindsrng01.b |
|
| 2 |
|
lindsrng01.r |
|
| 3 |
|
lindsrng01.e |
|
| 4 |
2 3
|
lmodsn0 |
|
| 5 |
3
|
fvexi |
|
| 6 |
|
hasheq0 |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
eqneqall |
|
| 9 |
8
|
com12 |
|
| 10 |
7 9
|
biimtrid |
|
| 11 |
4 10
|
syl |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
com12 |
|
| 14 |
2
|
lmodring |
|
| 15 |
14
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
3 16
|
0ring |
|
| 18 |
15 17
|
sylan |
|
| 19 |
|
simpr |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
adantl |
|
| 22 |
|
snex |
|
| 23 |
20 22
|
jctil |
|
| 24 |
23
|
adantl |
|
| 25 |
|
elmapg |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
fvex |
|
| 28 |
27
|
fconst2 |
|
| 29 |
|
fconstmpt |
|
| 30 |
29
|
eqeq2i |
|
| 31 |
28 30
|
bitri |
|
| 32 |
|
eqidd |
|
| 33 |
|
eqidd |
|
| 34 |
|
simpr |
|
| 35 |
|
fvexd |
|
| 36 |
32 33 34 35
|
fvmptd |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
37
|
a1d |
|
| 39 |
|
breq1 |
|
| 40 |
|
oveq1 |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
39 41
|
anbi12d |
|
| 43 |
|
fveq1 |
|
| 44 |
43
|
eqeq1d |
|
| 45 |
44
|
ralbidv |
|
| 46 |
42 45
|
imbi12d |
|
| 47 |
38 46
|
syl5ibrcom |
|
| 48 |
31 47
|
biimtrid |
|
| 49 |
26 48
|
sylbid |
|
| 50 |
49
|
ralrimiv |
|
| 51 |
|
oveq1 |
|
| 52 |
51
|
raleqdv |
|
| 53 |
52
|
adantr |
|
| 54 |
50 53
|
mpbird |
|
| 55 |
|
simpl |
|
| 56 |
55
|
ancomd |
|
| 57 |
56
|
adantl |
|
| 58 |
|
eqid |
|
| 59 |
1 58 2 3 16
|
islininds |
|
| 60 |
57 59
|
syl |
|
| 61 |
21 54 60
|
mpbir2and |
|
| 62 |
18 61
|
mpancom |
|
| 63 |
62
|
expcom |
|
| 64 |
13 63
|
jaoi |
|
| 65 |
64
|
expd |
|
| 66 |
65
|
com12 |
|
| 67 |
66
|
3imp |
|