Step |
Hyp |
Ref |
Expression |
1 |
|
lindsrng01.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lindsrng01.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lindsrng01.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
2 3
|
lmodsn0 |
⊢ ( 𝑀 ∈ LMod → 𝐸 ≠ ∅ ) |
5 |
3
|
fvexi |
⊢ 𝐸 ∈ V |
6 |
|
hasheq0 |
⊢ ( 𝐸 ∈ V → ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) |
8 |
|
eqneqall |
⊢ ( 𝐸 = ∅ → ( 𝐸 ≠ ∅ → 𝑆 linIndS 𝑀 ) ) |
9 |
8
|
com12 |
⊢ ( 𝐸 ≠ ∅ → ( 𝐸 = ∅ → 𝑆 linIndS 𝑀 ) ) |
10 |
7 9
|
syl5bi |
⊢ ( 𝐸 ≠ ∅ → ( ( ♯ ‘ 𝐸 ) = 0 → 𝑆 linIndS 𝑀 ) ) |
11 |
4 10
|
syl |
⊢ ( 𝑀 ∈ LMod → ( ( ♯ ‘ 𝐸 ) = 0 → 𝑆 linIndS 𝑀 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( ( ♯ ‘ 𝐸 ) = 0 → 𝑆 linIndS 𝑀 ) ) |
13 |
12
|
com12 |
⊢ ( ( ♯ ‘ 𝐸 ) = 0 → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑆 linIndS 𝑀 ) ) |
14 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Ring ) |
15 |
14
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑅 ∈ Ring ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
3 16
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐸 ) = 1 ) → 𝐸 = { ( 0g ‘ 𝑅 ) } ) |
18 |
15 17
|
sylan |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) → 𝐸 = { ( 0g ‘ 𝑅 ) } ) |
19 |
|
simpr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑆 ∈ 𝒫 𝐵 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) → 𝑆 ∈ 𝒫 𝐵 ) |
21 |
20
|
adantl |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → 𝑆 ∈ 𝒫 𝐵 ) |
22 |
|
snex |
⊢ { ( 0g ‘ 𝑅 ) } ∈ V |
23 |
20 22
|
jctil |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) → ( { ( 0g ‘ 𝑅 ) } ∈ V ∧ 𝑆 ∈ 𝒫 𝐵 ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( { ( 0g ‘ 𝑅 ) } ∈ V ∧ 𝑆 ∈ 𝒫 𝐵 ) ) |
25 |
|
elmapg |
⊢ ( ( { ( 0g ‘ 𝑅 ) } ∈ V ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑓 ∈ ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) ↔ 𝑓 : 𝑆 ⟶ { ( 0g ‘ 𝑅 ) } ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( 𝑓 ∈ ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) ↔ 𝑓 : 𝑆 ⟶ { ( 0g ‘ 𝑅 ) } ) ) |
27 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
28 |
27
|
fconst2 |
⊢ ( 𝑓 : 𝑆 ⟶ { ( 0g ‘ 𝑅 ) } ↔ 𝑓 = ( 𝑆 × { ( 0g ‘ 𝑅 ) } ) ) |
29 |
|
fconstmpt |
⊢ ( 𝑆 × { ( 0g ‘ 𝑅 ) } ) = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) |
30 |
29
|
eqeq2i |
⊢ ( 𝑓 = ( 𝑆 × { ( 0g ‘ 𝑅 ) } ) ↔ 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ) |
31 |
28 30
|
bitri |
⊢ ( 𝑓 : 𝑆 ⟶ { ( 0g ‘ 𝑅 ) } ↔ 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ) |
32 |
|
eqidd |
⊢ ( ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) ∧ 𝑣 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ) |
33 |
|
eqidd |
⊢ ( ( ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) ∧ 𝑣 ∈ 𝑆 ) ∧ 𝑥 = 𝑣 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ 𝑆 ) |
35 |
|
fvexd |
⊢ ( ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) ∧ 𝑣 ∈ 𝑆 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
36 |
32 33 34 35
|
fvmptd |
⊢ ( ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) |
37 |
36
|
ralrimiva |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ∀ 𝑣 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) |
38 |
37
|
a1d |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) finSupp ( 0g ‘ 𝑅 ) ∧ ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) |
39 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ↔ ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
40 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ( linC ‘ 𝑀 ) 𝑆 ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) ) |
42 |
39 41
|
anbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) finSupp ( 0g ‘ 𝑅 ) ∧ ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) ) ) |
43 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( 𝑓 ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) ) |
44 |
43
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑣 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) |
46 |
42 45
|
imbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) finSupp ( 0g ‘ 𝑅 ) ∧ ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) |
47 |
38 46
|
syl5ibrcom |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( 𝑓 = ( 𝑥 ∈ 𝑆 ↦ ( 0g ‘ 𝑅 ) ) → ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) |
48 |
31 47
|
syl5bi |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( 𝑓 : 𝑆 ⟶ { ( 0g ‘ 𝑅 ) } → ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) |
49 |
26 48
|
sylbid |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( 𝑓 ∈ ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) → ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) |
50 |
49
|
ralrimiv |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ∀ 𝑓 ∈ ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) |
51 |
|
oveq1 |
⊢ ( 𝐸 = { ( 0g ‘ 𝑅 ) } → ( 𝐸 ↑m 𝑆 ) = ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) ) |
52 |
51
|
raleqdv |
⊢ ( 𝐸 = { ( 0g ‘ 𝑅 ) } → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑓 ∈ ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑓 ∈ ( { ( 0g ‘ 𝑅 ) } ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) |
54 |
50 53
|
mpbird |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) |
55 |
|
simpl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ) |
56 |
55
|
ancomd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ) ) |
58 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
59 |
1 58 2 3 16
|
islininds |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
60 |
57 59
|
syl |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ 𝑅 ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑣 ∈ 𝑆 ( 𝑓 ‘ 𝑣 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
61 |
21 54 60
|
mpbir2and |
⊢ ( ( 𝐸 = { ( 0g ‘ 𝑅 ) } ∧ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) ) → 𝑆 linIndS 𝑀 ) |
62 |
18 61
|
mpancom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) ∧ ( ♯ ‘ 𝐸 ) = 1 ) → 𝑆 linIndS 𝑀 ) |
63 |
62
|
expcom |
⊢ ( ( ♯ ‘ 𝐸 ) = 1 → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑆 linIndS 𝑀 ) ) |
64 |
13 63
|
jaoi |
⊢ ( ( ( ♯ ‘ 𝐸 ) = 0 ∨ ( ♯ ‘ 𝐸 ) = 1 ) → ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑆 linIndS 𝑀 ) ) |
65 |
64
|
expd |
⊢ ( ( ( ♯ ‘ 𝐸 ) = 0 ∨ ( ♯ ‘ 𝐸 ) = 1 ) → ( 𝑀 ∈ LMod → ( 𝑆 ∈ 𝒫 𝐵 → 𝑆 linIndS 𝑀 ) ) ) |
66 |
65
|
com12 |
⊢ ( 𝑀 ∈ LMod → ( ( ( ♯ ‘ 𝐸 ) = 0 ∨ ( ♯ ‘ 𝐸 ) = 1 ) → ( 𝑆 ∈ 𝒫 𝐵 → 𝑆 linIndS 𝑀 ) ) ) |
67 |
66
|
3imp |
⊢ ( ( 𝑀 ∈ LMod ∧ ( ( ♯ ‘ 𝐸 ) = 0 ∨ ( ♯ ‘ 𝐸 ) = 1 ) ∧ 𝑆 ∈ 𝒫 𝐵 ) → 𝑆 linIndS 𝑀 ) |