| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ) |
| 2 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 3 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
| 5 |
|
0ringnnzr |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ Ring → ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ↔ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ↔ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ) |
| 7 |
1 6
|
mpbird |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ) |
| 8 |
7
|
olcd |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 0 ∨ ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 11 |
9 2 10
|
lindsrng01 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 0 ∨ ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ) ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑆 linIndS 𝑀 ) |
| 12 |
8 11
|
syld3an2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → 𝑆 linIndS 𝑀 ) |