Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing /\ S e. ~P ( Base ` M ) ) -> -. ( Scalar ` M ) e. NzRing ) |
2 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
3 |
2
|
lmodring |
|- ( M e. LMod -> ( Scalar ` M ) e. Ring ) |
4 |
3
|
3ad2ant1 |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing /\ S e. ~P ( Base ` M ) ) -> ( Scalar ` M ) e. Ring ) |
5 |
|
0ringnnzr |
|- ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 <-> -. ( Scalar ` M ) e. NzRing ) ) |
6 |
4 5
|
syl |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing /\ S e. ~P ( Base ` M ) ) -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 <-> -. ( Scalar ` M ) e. NzRing ) ) |
7 |
1 6
|
mpbird |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing /\ S e. ~P ( Base ` M ) ) -> ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) |
8 |
7
|
olcd |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing /\ S e. ~P ( Base ` M ) ) -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 0 \/ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) ) |
9 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
11 |
9 2 10
|
lindsrng01 |
|- ( ( M e. LMod /\ ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 0 \/ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) /\ S e. ~P ( Base ` M ) ) -> S linIndS M ) |
12 |
8 11
|
syld3an2 |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing /\ S e. ~P ( Base ` M ) ) -> S linIndS M ) |