Step |
Hyp |
Ref |
Expression |
1 |
|
snlindsntor.b |
|- B = ( Base ` M ) |
2 |
|
snlindsntor.r |
|- R = ( Scalar ` M ) |
3 |
|
snlindsntor.s |
|- S = ( Base ` R ) |
4 |
|
snlindsntor.0 |
|- .0. = ( 0g ` R ) |
5 |
|
snlindsntor.z |
|- Z = ( 0g ` M ) |
6 |
|
snlindsntor.t |
|- .x. = ( .s ` M ) |
7 |
|
eqidd |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> { <. X , s >. } = { <. X , s >. } ) |
8 |
|
fsng |
|- ( ( X e. B /\ s e. S ) -> ( { <. X , s >. } : { X } --> { s } <-> { <. X , s >. } = { <. X , s >. } ) ) |
9 |
8
|
adantll |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( { <. X , s >. } : { X } --> { s } <-> { <. X , s >. } = { <. X , s >. } ) ) |
10 |
7 9
|
mpbird |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> { <. X , s >. } : { X } --> { s } ) |
11 |
|
snssi |
|- ( s e. S -> { s } C_ S ) |
12 |
11
|
adantl |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> { s } C_ S ) |
13 |
10 12
|
fssd |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> { <. X , s >. } : { X } --> S ) |
14 |
3
|
fvexi |
|- S e. _V |
15 |
|
snex |
|- { X } e. _V |
16 |
14 15
|
pm3.2i |
|- ( S e. _V /\ { X } e. _V ) |
17 |
|
elmapg |
|- ( ( S e. _V /\ { X } e. _V ) -> ( { <. X , s >. } e. ( S ^m { X } ) <-> { <. X , s >. } : { X } --> S ) ) |
18 |
16 17
|
mp1i |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( { <. X , s >. } e. ( S ^m { X } ) <-> { <. X , s >. } : { X } --> S ) ) |
19 |
13 18
|
mpbird |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> { <. X , s >. } e. ( S ^m { X } ) ) |
20 |
|
oveq1 |
|- ( f = { <. X , s >. } -> ( f ( linC ` M ) { X } ) = ( { <. X , s >. } ( linC ` M ) { X } ) ) |
21 |
20
|
eqeq1d |
|- ( f = { <. X , s >. } -> ( ( f ( linC ` M ) { X } ) = Z <-> ( { <. X , s >. } ( linC ` M ) { X } ) = Z ) ) |
22 |
|
fveq1 |
|- ( f = { <. X , s >. } -> ( f ` X ) = ( { <. X , s >. } ` X ) ) |
23 |
22
|
eqeq1d |
|- ( f = { <. X , s >. } -> ( ( f ` X ) = .0. <-> ( { <. X , s >. } ` X ) = .0. ) ) |
24 |
21 23
|
imbi12d |
|- ( f = { <. X , s >. } -> ( ( ( f ( linC ` M ) { X } ) = Z -> ( f ` X ) = .0. ) <-> ( ( { <. X , s >. } ( linC ` M ) { X } ) = Z -> ( { <. X , s >. } ` X ) = .0. ) ) ) |
25 |
1 2 3 6
|
lincvalsng |
|- ( ( M e. LMod /\ X e. B /\ s e. S ) -> ( { <. X , s >. } ( linC ` M ) { X } ) = ( s .x. X ) ) |
26 |
25
|
3expa |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( { <. X , s >. } ( linC ` M ) { X } ) = ( s .x. X ) ) |
27 |
26
|
eqeq1d |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( ( { <. X , s >. } ( linC ` M ) { X } ) = Z <-> ( s .x. X ) = Z ) ) |
28 |
|
fvsng |
|- ( ( X e. B /\ s e. S ) -> ( { <. X , s >. } ` X ) = s ) |
29 |
28
|
adantll |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( { <. X , s >. } ` X ) = s ) |
30 |
29
|
eqeq1d |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( ( { <. X , s >. } ` X ) = .0. <-> s = .0. ) ) |
31 |
27 30
|
imbi12d |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( ( ( { <. X , s >. } ( linC ` M ) { X } ) = Z -> ( { <. X , s >. } ` X ) = .0. ) <-> ( ( s .x. X ) = Z -> s = .0. ) ) ) |
32 |
24 31
|
sylan9bbr |
|- ( ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) /\ f = { <. X , s >. } ) -> ( ( ( f ( linC ` M ) { X } ) = Z -> ( f ` X ) = .0. ) <-> ( ( s .x. X ) = Z -> s = .0. ) ) ) |
33 |
19 32
|
rspcdv |
|- ( ( ( M e. LMod /\ X e. B ) /\ s e. S ) -> ( A. f e. ( S ^m { X } ) ( ( f ( linC ` M ) { X } ) = Z -> ( f ` X ) = .0. ) -> ( ( s .x. X ) = Z -> s = .0. ) ) ) |
34 |
33
|
ralrimdva |
|- ( ( M e. LMod /\ X e. B ) -> ( A. f e. ( S ^m { X } ) ( ( f ( linC ` M ) { X } ) = Z -> ( f ` X ) = .0. ) -> A. s e. S ( ( s .x. X ) = Z -> s = .0. ) ) ) |