Metamath Proof Explorer


Theorem snlindsntorlem

Description: Lemma for snlindsntor . (Contributed by AV, 15-Apr-2019)

Ref Expression
Hypotheses snlindsntor.b B=BaseM
snlindsntor.r R=ScalarM
snlindsntor.s S=BaseR
snlindsntor.0 0˙=0R
snlindsntor.z Z=0M
snlindsntor.t ·˙=M
Assertion snlindsntorlem MLModXBfSXflinCMX=ZfX=0˙sSs·˙X=Zs=0˙

Proof

Step Hyp Ref Expression
1 snlindsntor.b B=BaseM
2 snlindsntor.r R=ScalarM
3 snlindsntor.s S=BaseR
4 snlindsntor.0 0˙=0R
5 snlindsntor.z Z=0M
6 snlindsntor.t ·˙=M
7 eqidd MLModXBsSXs=Xs
8 fsng XBsSXs:XsXs=Xs
9 8 adantll MLModXBsSXs:XsXs=Xs
10 7 9 mpbird MLModXBsSXs:Xs
11 snssi sSsS
12 11 adantl MLModXBsSsS
13 10 12 fssd MLModXBsSXs:XS
14 3 fvexi SV
15 snex XV
16 14 15 pm3.2i SVXV
17 elmapg SVXVXsSXXs:XS
18 16 17 mp1i MLModXBsSXsSXXs:XS
19 13 18 mpbird MLModXBsSXsSX
20 oveq1 f=XsflinCMX=XslinCMX
21 20 eqeq1d f=XsflinCMX=ZXslinCMX=Z
22 fveq1 f=XsfX=XsX
23 22 eqeq1d f=XsfX=0˙XsX=0˙
24 21 23 imbi12d f=XsflinCMX=ZfX=0˙XslinCMX=ZXsX=0˙
25 1 2 3 6 lincvalsng MLModXBsSXslinCMX=s·˙X
26 25 3expa MLModXBsSXslinCMX=s·˙X
27 26 eqeq1d MLModXBsSXslinCMX=Zs·˙X=Z
28 fvsng XBsSXsX=s
29 28 adantll MLModXBsSXsX=s
30 29 eqeq1d MLModXBsSXsX=0˙s=0˙
31 27 30 imbi12d MLModXBsSXslinCMX=ZXsX=0˙s·˙X=Zs=0˙
32 24 31 sylan9bbr MLModXBsSf=XsflinCMX=ZfX=0˙s·˙X=Zs=0˙
33 19 32 rspcdv MLModXBsSfSXflinCMX=ZfX=0˙s·˙X=Zs=0˙
34 33 ralrimdva MLModXBfSXflinCMX=ZfX=0˙sSs·˙X=Zs=0˙