Metamath Proof Explorer


Theorem snlindsntorlem

Description: Lemma for snlindsntor . (Contributed by AV, 15-Apr-2019)

Ref Expression
Hypotheses snlindsntor.b B = Base M
snlindsntor.r R = Scalar M
snlindsntor.s S = Base R
snlindsntor.0 0 ˙ = 0 R
snlindsntor.z Z = 0 M
snlindsntor.t · ˙ = M
Assertion snlindsntorlem M LMod X B f S X f linC M X = Z f X = 0 ˙ s S s · ˙ X = Z s = 0 ˙

Proof

Step Hyp Ref Expression
1 snlindsntor.b B = Base M
2 snlindsntor.r R = Scalar M
3 snlindsntor.s S = Base R
4 snlindsntor.0 0 ˙ = 0 R
5 snlindsntor.z Z = 0 M
6 snlindsntor.t · ˙ = M
7 eqidd M LMod X B s S X s = X s
8 fsng X B s S X s : X s X s = X s
9 8 adantll M LMod X B s S X s : X s X s = X s
10 7 9 mpbird M LMod X B s S X s : X s
11 snssi s S s S
12 11 adantl M LMod X B s S s S
13 10 12 fssd M LMod X B s S X s : X S
14 3 fvexi S V
15 snex X V
16 14 15 pm3.2i S V X V
17 elmapg S V X V X s S X X s : X S
18 16 17 mp1i M LMod X B s S X s S X X s : X S
19 13 18 mpbird M LMod X B s S X s S X
20 oveq1 f = X s f linC M X = X s linC M X
21 20 eqeq1d f = X s f linC M X = Z X s linC M X = Z
22 fveq1 f = X s f X = X s X
23 22 eqeq1d f = X s f X = 0 ˙ X s X = 0 ˙
24 21 23 imbi12d f = X s f linC M X = Z f X = 0 ˙ X s linC M X = Z X s X = 0 ˙
25 1 2 3 6 lincvalsng M LMod X B s S X s linC M X = s · ˙ X
26 25 3expa M LMod X B s S X s linC M X = s · ˙ X
27 26 eqeq1d M LMod X B s S X s linC M X = Z s · ˙ X = Z
28 fvsng X B s S X s X = s
29 28 adantll M LMod X B s S X s X = s
30 29 eqeq1d M LMod X B s S X s X = 0 ˙ s = 0 ˙
31 27 30 imbi12d M LMod X B s S X s linC M X = Z X s X = 0 ˙ s · ˙ X = Z s = 0 ˙
32 24 31 sylan9bbr M LMod X B s S f = X s f linC M X = Z f X = 0 ˙ s · ˙ X = Z s = 0 ˙
33 19 32 rspcdv M LMod X B s S f S X f linC M X = Z f X = 0 ˙ s · ˙ X = Z s = 0 ˙
34 33 ralrimdva M LMod X B f S X f linC M X = Z f X = 0 ˙ s S s · ˙ X = Z s = 0 ˙