Description: Lemma for snlindsntor . (Contributed by AV, 15-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | snlindsntor.b | |
|
snlindsntor.r | |
||
snlindsntor.s | |
||
snlindsntor.0 | |
||
snlindsntor.z | |
||
snlindsntor.t | |
||
Assertion | snlindsntorlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snlindsntor.b | |
|
2 | snlindsntor.r | |
|
3 | snlindsntor.s | |
|
4 | snlindsntor.0 | |
|
5 | snlindsntor.z | |
|
6 | snlindsntor.t | |
|
7 | eqidd | |
|
8 | fsng | |
|
9 | 8 | adantll | |
10 | 7 9 | mpbird | |
11 | snssi | |
|
12 | 11 | adantl | |
13 | 10 12 | fssd | |
14 | 3 | fvexi | |
15 | snex | |
|
16 | 14 15 | pm3.2i | |
17 | elmapg | |
|
18 | 16 17 | mp1i | |
19 | 13 18 | mpbird | |
20 | oveq1 | |
|
21 | 20 | eqeq1d | |
22 | fveq1 | |
|
23 | 22 | eqeq1d | |
24 | 21 23 | imbi12d | |
25 | 1 2 3 6 | lincvalsng | |
26 | 25 | 3expa | |
27 | 26 | eqeq1d | |
28 | fvsng | |
|
29 | 28 | adantll | |
30 | 29 | eqeq1d | |
31 | 27 30 | imbi12d | |
32 | 24 31 | sylan9bbr | |
33 | 19 32 | rspcdv | |
34 | 33 | ralrimdva | |