Metamath Proof Explorer


Theorem snlindsntor

Description: A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra) ): "An element m of a module M over a ring R is called atorsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., ( r .x. m ) = 0 . In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in Lang p. 147 states that "An element x of [a module] E [over a ring R] is called atorsion element if there exists a e. R , a =/= 0 , such that a .x. x = 0 . This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019) (Revised by AV, 27-Apr-2019)

Ref Expression
Hypotheses snlindsntor.b B = Base M
snlindsntor.r R = Scalar M
snlindsntor.s S = Base R
snlindsntor.0 0 ˙ = 0 R
snlindsntor.z Z = 0 M
snlindsntor.t · ˙ = M
Assertion snlindsntor M LMod X B s S 0 ˙ s · ˙ X Z X linIndS M

Proof

Step Hyp Ref Expression
1 snlindsntor.b B = Base M
2 snlindsntor.r R = Scalar M
3 snlindsntor.s S = Base R
4 snlindsntor.0 0 ˙ = 0 R
5 snlindsntor.z Z = 0 M
6 snlindsntor.t · ˙ = M
7 df-ne s · ˙ X Z ¬ s · ˙ X = Z
8 7 ralbii s S 0 ˙ s · ˙ X Z s S 0 ˙ ¬ s · ˙ X = Z
9 raldifsni s S 0 ˙ ¬ s · ˙ X = Z s S s · ˙ X = Z s = 0 ˙
10 8 9 bitri s S 0 ˙ s · ˙ X Z s S s · ˙ X = Z s = 0 ˙
11 simpl M LMod X B M LMod
12 11 adantr M LMod X B s S s · ˙ X = Z s = 0 ˙ M LMod
13 12 adantr M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X M LMod
14 2 fveq2i Base R = Base Scalar M
15 3 14 eqtri S = Base Scalar M
16 15 oveq1i S X = Base Scalar M X
17 16 eleq2i f S X f Base Scalar M X
18 17 biimpi f S X f Base Scalar M X
19 18 adantl M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X f Base Scalar M X
20 snelpwi X Base M X 𝒫 Base M
21 20 1 eleq2s X B X 𝒫 Base M
22 21 ad3antlr M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X X 𝒫 Base M
23 lincval M LMod f Base Scalar M X X 𝒫 Base M f linC M X = M x X f x M x
24 13 19 22 23 syl3anc M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X f linC M X = M x X f x M x
25 24 eqeq1d M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X f linC M X = Z M x X f x M x = Z
26 25 anbi2d M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X finSupp 0 ˙ f f linC M X = Z finSupp 0 ˙ f M x X f x M x = Z
27 lmodgrp M LMod M Grp
28 grpmnd M Grp M Mnd
29 27 28 syl M LMod M Mnd
30 29 ad3antrrr M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X M Mnd
31 simpllr M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X X B
32 elmapi f S X f : X S
33 12 adantl f : X S M LMod X B s S s · ˙ X = Z s = 0 ˙ M LMod
34 snidg X B X X
35 34 adantl M LMod X B X X
36 35 adantr M LMod X B s S s · ˙ X = Z s = 0 ˙ X X
37 ffvelrn f : X S X X f X S
38 36 37 sylan2 f : X S M LMod X B s S s · ˙ X = Z s = 0 ˙ f X S
39 simprlr f : X S M LMod X B s S s · ˙ X = Z s = 0 ˙ X B
40 eqid M = M
41 1 2 40 3 lmodvscl M LMod f X S X B f X M X B
42 33 38 39 41 syl3anc f : X S M LMod X B s S s · ˙ X = Z s = 0 ˙ f X M X B
43 42 expcom M LMod X B s S s · ˙ X = Z s = 0 ˙ f : X S f X M X B
44 32 43 syl5com f S X M LMod X B s S s · ˙ X = Z s = 0 ˙ f X M X B
45 44 impcom M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X f X M X B
46 fveq2 x = X f x = f X
47 id x = X x = X
48 46 47 oveq12d x = X f x M x = f X M X
49 1 48 gsumsn M Mnd X B f X M X B M x X f x M x = f X M X
50 30 31 45 49 syl3anc M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X M x X f x M x = f X M X
51 50 eqeq1d M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X M x X f x M x = Z f X M X = Z
52 34 37 sylan2 f : X S X B f X S
53 52 expcom X B f : X S f X S
54 53 adantl M LMod X B f : X S f X S
55 6 oveqi f X · ˙ X = f X M X
56 55 eqeq1i f X · ˙ X = Z f X M X = Z
57 oveq1 s = f X s · ˙ X = f X · ˙ X
58 57 eqeq1d s = f X s · ˙ X = Z f X · ˙ X = Z
59 eqeq1 s = f X s = 0 ˙ f X = 0 ˙
60 58 59 imbi12d s = f X s · ˙ X = Z s = 0 ˙ f X · ˙ X = Z f X = 0 ˙
61 60 rspcva f X S s S s · ˙ X = Z s = 0 ˙ f X · ˙ X = Z f X = 0 ˙
62 56 61 syl5bir f X S s S s · ˙ X = Z s = 0 ˙ f X M X = Z f X = 0 ˙
63 62 ex f X S s S s · ˙ X = Z s = 0 ˙ f X M X = Z f X = 0 ˙
64 32 54 63 syl56 M LMod X B f S X s S s · ˙ X = Z s = 0 ˙ f X M X = Z f X = 0 ˙
65 64 com23 M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X f X M X = Z f X = 0 ˙
66 65 imp31 M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X f X M X = Z f X = 0 ˙
67 51 66 sylbid M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X M x X f x M x = Z f X = 0 ˙
68 67 adantld M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X finSupp 0 ˙ f M x X f x M x = Z f X = 0 ˙
69 26 68 sylbid M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙
70 69 ralrimiva M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙
71 70 ex M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙
72 impexp finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ finSupp 0 ˙ f f linC M X = Z f X = 0 ˙
73 32 adantl M LMod X B f S X f : X S
74 snfi X Fin
75 74 a1i M LMod X B f S X X Fin
76 4 fvexi 0 ˙ V
77 76 a1i M LMod X B f S X 0 ˙ V
78 73 75 77 fdmfifsupp M LMod X B f S X finSupp 0 ˙ f
79 pm2.27 finSupp 0 ˙ f finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ f linC M X = Z f X = 0 ˙
80 78 79 syl M LMod X B f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ f linC M X = Z f X = 0 ˙
81 72 80 syl5bi M LMod X B f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ f linC M X = Z f X = 0 ˙
82 81 ralimdva M LMod X B f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ f S X f linC M X = Z f X = 0 ˙
83 1 2 3 4 5 6 snlindsntorlem M LMod X B f S X f linC M X = Z f X = 0 ˙ s S s · ˙ X = Z s = 0 ˙
84 82 83 syld M LMod X B f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ s S s · ˙ X = Z s = 0 ˙
85 71 84 impbid M LMod X B s S s · ˙ X = Z s = 0 ˙ f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙
86 fveqeq2 y = X f y = 0 ˙ f X = 0 ˙
87 86 ralsng X B y X f y = 0 ˙ f X = 0 ˙
88 87 adantl M LMod X B y X f y = 0 ˙ f X = 0 ˙
89 88 bicomd M LMod X B f X = 0 ˙ y X f y = 0 ˙
90 89 imbi2d M LMod X B finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
91 90 ralbidv M LMod X B f S X finSupp 0 ˙ f f linC M X = Z f X = 0 ˙ f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
92 snelpwi X B X 𝒫 B
93 92 adantl M LMod X B X 𝒫 B
94 93 biantrurd M LMod X B f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙ X 𝒫 B f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
95 85 91 94 3bitrd M LMod X B s S s · ˙ X = Z s = 0 ˙ X 𝒫 B f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
96 10 95 syl5bb M LMod X B s S 0 ˙ s · ˙ X Z X 𝒫 B f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
97 snex X V
98 1 5 2 3 4 islininds X V M LMod X linIndS M X 𝒫 B f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
99 97 11 98 sylancr M LMod X B X linIndS M X 𝒫 B f S X finSupp 0 ˙ f f linC M X = Z y X f y = 0 ˙
100 96 99 bitr4d M LMod X B s S 0 ˙ s · ˙ X Z X linIndS M