Step |
Hyp |
Ref |
Expression |
1 |
|
snlindsntor.b |
|
2 |
|
snlindsntor.r |
|
3 |
|
snlindsntor.s |
|
4 |
|
snlindsntor.0 |
|
5 |
|
snlindsntor.z |
|
6 |
|
snlindsntor.t |
|
7 |
|
ldepsprlem.1 |
|
8 |
|
ldepsprlem.n |
|
9 |
|
oveq2 |
|
10 |
9
|
oveq1d |
|
11 |
|
simpl |
|
12 |
2 3 7
|
lmod1cl |
|
13 |
12
|
adantr |
|
14 |
|
simpr3 |
|
15 |
|
simpr2 |
|
16 |
|
eqid |
|
17 |
1 2 6 3 16
|
lmodvsass |
|
18 |
11 13 14 15 17
|
syl13anc |
|
19 |
18
|
eqcomd |
|
20 |
19
|
oveq1d |
|
21 |
2
|
lmodring |
|
22 |
|
simp3 |
|
23 |
3 16 7
|
ringlidm |
|
24 |
21 22 23
|
syl2an |
|
25 |
24
|
oveq1d |
|
26 |
25
|
oveq1d |
|
27 |
2
|
lmodfgrp |
|
28 |
3 8
|
grpinvcl |
|
29 |
27 22 28
|
syl2an |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
1 30 2 6 3 31
|
lmodvsdir |
|
33 |
11 14 29 15 32
|
syl13anc |
|
34 |
3 31 4 8
|
grprinv |
|
35 |
27 22 34
|
syl2an |
|
36 |
35
|
oveq1d |
|
37 |
1 2 6 4 5
|
lmod0vs |
|
38 |
37
|
3ad2antr2 |
|
39 |
36 38
|
eqtrd |
|
40 |
26 33 39
|
3eqtr2d |
|
41 |
20 40
|
eqtrd |
|
42 |
10 41
|
sylan9eqr |
|
43 |
42
|
ex |
|