Step |
Hyp |
Ref |
Expression |
1 |
|
snlindsntor.b |
|
2 |
|
snlindsntor.r |
|
3 |
|
snlindsntor.s |
|
4 |
|
snlindsntor.0 |
|
5 |
|
snlindsntor.z |
|
6 |
|
snlindsntor.t |
|
7 |
|
3simpa |
|
8 |
7
|
ad2antlr |
|
9 |
|
fvex |
|
10 |
|
fvex |
|
11 |
9 10
|
pm3.2i |
|
12 |
11
|
a1i |
|
13 |
|
simp3 |
|
14 |
13
|
ad2antlr |
|
15 |
|
fprg |
|
16 |
8 12 14 15
|
syl3anc |
|
17 |
|
prfi |
|
18 |
17
|
a1i |
|
19 |
4
|
fvexi |
|
20 |
19
|
a1i |
|
21 |
16 18 20
|
fdmfifsupp |
|
22 |
13
|
anim2i |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
2 3 24
|
lmod1cl |
|
26 |
|
simp1 |
|
27 |
25 26
|
anim12ci |
|
28 |
27
|
adantr |
|
29 |
|
simp2 |
|
30 |
29
|
ad2antlr |
|
31 |
2
|
lmodfgrp |
|
32 |
31
|
adantr |
|
33 |
|
simpl |
|
34 |
|
eqid |
|
35 |
3 34
|
grpinvcl |
|
36 |
32 33 35
|
syl2an |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
1 2 3 6 37 38
|
lincvalpr |
|
40 |
23 28 30 36 39
|
syl112anc |
|
41 |
|
simpll |
|
42 |
26
|
ad2antlr |
|
43 |
33
|
adantl |
|
44 |
42 30 43
|
3jca |
|
45 |
41 44
|
jca |
|
46 |
|
simprr |
|
47 |
1 2 3 4 5 6 24 34
|
ldepsprlem |
|
48 |
45 46 47
|
sylc |
|
49 |
40 48
|
eqtrd |
|
50 |
2
|
lmodring |
|
51 |
|
eqcom |
|
52 |
|
eqid |
|
53 |
3 52 24
|
01eq0ring |
|
54 |
|
sneq |
|
55 |
54
|
eqeq2d |
|
56 |
|
eleq2 |
|
57 |
|
elsni |
|
58 |
|
oveq1 |
|
59 |
58
|
eqeq2d |
|
60 |
29
|
anim1i |
|
61 |
60
|
ancomd |
|
62 |
1 2 6 24
|
lmodvs1 |
|
63 |
61 62
|
syl |
|
64 |
63
|
eqeq2d |
|
65 |
|
eqneqall |
|
66 |
65
|
com12 |
|
67 |
66
|
3ad2ant3 |
|
68 |
67
|
adantr |
|
69 |
64 68
|
sylbid |
|
70 |
69
|
ex |
|
71 |
70
|
com3r |
|
72 |
59 71
|
syl6bi |
|
73 |
57 72
|
syl |
|
74 |
56 73
|
syl6bi |
|
75 |
74
|
impd |
|
76 |
75
|
com23 |
|
77 |
55 76
|
syl6bi |
|
78 |
77
|
adantl |
|
79 |
53 78
|
mpd |
|
80 |
79
|
ex |
|
81 |
51 80
|
syl5bi |
|
82 |
81
|
com25 |
|
83 |
50 82
|
mpcom |
|
84 |
83
|
imp31 |
|
85 |
|
orc |
|
86 |
84 85
|
pm2.61d1 |
|
87 |
4
|
eqeq2i |
|
88 |
87
|
necon3abii |
|
89 |
88
|
orbi1i |
|
90 |
86 89
|
sylibr |
|
91 |
|
fvexd |
|
92 |
|
fvpr1g |
|
93 |
42 91 14 92
|
syl3anc |
|
94 |
93
|
neeq1d |
|
95 |
|
fvexd |
|
96 |
|
fvpr2g |
|
97 |
30 95 14 96
|
syl3anc |
|
98 |
97
|
neeq1d |
|
99 |
94 98
|
orbi12d |
|
100 |
90 99
|
mpbird |
|
101 |
|
fveq2 |
|
102 |
101
|
neeq1d |
|
103 |
|
fveq2 |
|
104 |
103
|
neeq1d |
|
105 |
102 104
|
rexprg |
|
106 |
8 105
|
syl |
|
107 |
100 106
|
mpbird |
|
108 |
25
|
adantr |
|
109 |
108
|
adantr |
|
110 |
3
|
fvexi |
|
111 |
14 110
|
jctir |
|
112 |
38
|
mapprop |
|
113 |
42 109 30 36 111 112
|
syl221anc |
|
114 |
|
breq1 |
|
115 |
|
oveq1 |
|
116 |
115
|
eqeq1d |
|
117 |
|
fveq1 |
|
118 |
117
|
neeq1d |
|
119 |
118
|
rexbidv |
|
120 |
114 116 119
|
3anbi123d |
|
121 |
120
|
adantl |
|
122 |
113 121
|
rspcedv |
|
123 |
21 49 107 122
|
mp3and |
|
124 |
|
prelpwi |
|
125 |
124
|
3adant3 |
|
126 |
125
|
ad2antlr |
|
127 |
1 5 2 3 4
|
islindeps |
|
128 |
41 126 127
|
syl2anc |
|
129 |
123 128
|
mpbird |
|
130 |
129
|
ex |
|