| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snlindsntor.b |
|
| 2 |
|
snlindsntor.r |
|
| 3 |
|
snlindsntor.s |
|
| 4 |
|
snlindsntor.0 |
|
| 5 |
|
snlindsntor.z |
|
| 6 |
|
snlindsntor.t |
|
| 7 |
|
3simpa |
|
| 8 |
7
|
ad2antlr |
|
| 9 |
|
fvex |
|
| 10 |
|
fvex |
|
| 11 |
9 10
|
pm3.2i |
|
| 12 |
11
|
a1i |
|
| 13 |
|
simp3 |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
|
fprg |
|
| 16 |
8 12 14 15
|
syl3anc |
|
| 17 |
|
prfi |
|
| 18 |
17
|
a1i |
|
| 19 |
4
|
fvexi |
|
| 20 |
19
|
a1i |
|
| 21 |
16 18 20
|
fdmfifsupp |
|
| 22 |
13
|
anim2i |
|
| 23 |
22
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
2 3 24
|
lmod1cl |
|
| 26 |
|
simp1 |
|
| 27 |
25 26
|
anim12ci |
|
| 28 |
27
|
adantr |
|
| 29 |
|
simp2 |
|
| 30 |
29
|
ad2antlr |
|
| 31 |
2
|
lmodfgrp |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simpl |
|
| 34 |
|
eqid |
|
| 35 |
3 34
|
grpinvcl |
|
| 36 |
32 33 35
|
syl2an |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
1 2 3 6 37 38
|
lincvalpr |
|
| 40 |
23 28 30 36 39
|
syl112anc |
|
| 41 |
|
simpll |
|
| 42 |
26
|
ad2antlr |
|
| 43 |
33
|
adantl |
|
| 44 |
42 30 43
|
3jca |
|
| 45 |
41 44
|
jca |
|
| 46 |
|
simprr |
|
| 47 |
1 2 3 4 5 6 24 34
|
ldepsprlem |
|
| 48 |
45 46 47
|
sylc |
|
| 49 |
40 48
|
eqtrd |
|
| 50 |
2
|
lmodring |
|
| 51 |
|
eqcom |
|
| 52 |
|
eqid |
|
| 53 |
3 52 24
|
01eq0ring |
|
| 54 |
|
sneq |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
|
eleq2 |
|
| 57 |
|
elsni |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
29
|
anim1i |
|
| 61 |
60
|
ancomd |
|
| 62 |
1 2 6 24
|
lmodvs1 |
|
| 63 |
61 62
|
syl |
|
| 64 |
63
|
eqeq2d |
|
| 65 |
|
eqneqall |
|
| 66 |
65
|
com12 |
|
| 67 |
66
|
3ad2ant3 |
|
| 68 |
67
|
adantr |
|
| 69 |
64 68
|
sylbid |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
com3r |
|
| 72 |
59 71
|
biimtrdi |
|
| 73 |
57 72
|
syl |
|
| 74 |
56 73
|
biimtrdi |
|
| 75 |
74
|
impd |
|
| 76 |
75
|
com23 |
|
| 77 |
55 76
|
biimtrdi |
|
| 78 |
77
|
adantl |
|
| 79 |
53 78
|
mpd |
|
| 80 |
79
|
ex |
|
| 81 |
51 80
|
biimtrid |
|
| 82 |
81
|
com25 |
|
| 83 |
50 82
|
mpcom |
|
| 84 |
83
|
imp31 |
|
| 85 |
|
orc |
|
| 86 |
84 85
|
pm2.61d1 |
|
| 87 |
4
|
eqeq2i |
|
| 88 |
87
|
necon3abii |
|
| 89 |
88
|
orbi1i |
|
| 90 |
86 89
|
sylibr |
|
| 91 |
|
fvexd |
|
| 92 |
|
fvpr1g |
|
| 93 |
42 91 14 92
|
syl3anc |
|
| 94 |
93
|
neeq1d |
|
| 95 |
|
fvexd |
|
| 96 |
|
fvpr2g |
|
| 97 |
30 95 14 96
|
syl3anc |
|
| 98 |
97
|
neeq1d |
|
| 99 |
94 98
|
orbi12d |
|
| 100 |
90 99
|
mpbird |
|
| 101 |
|
fveq2 |
|
| 102 |
101
|
neeq1d |
|
| 103 |
|
fveq2 |
|
| 104 |
103
|
neeq1d |
|
| 105 |
102 104
|
rexprg |
|
| 106 |
8 105
|
syl |
|
| 107 |
100 106
|
mpbird |
|
| 108 |
25
|
adantr |
|
| 109 |
108
|
adantr |
|
| 110 |
3
|
fvexi |
|
| 111 |
14 110
|
jctir |
|
| 112 |
38
|
mapprop |
|
| 113 |
42 109 30 36 111 112
|
syl221anc |
|
| 114 |
|
breq1 |
|
| 115 |
|
oveq1 |
|
| 116 |
115
|
eqeq1d |
|
| 117 |
|
fveq1 |
|
| 118 |
117
|
neeq1d |
|
| 119 |
118
|
rexbidv |
|
| 120 |
114 116 119
|
3anbi123d |
|
| 121 |
120
|
adantl |
|
| 122 |
113 121
|
rspcedv |
|
| 123 |
21 49 107 122
|
mp3and |
|
| 124 |
|
prelpwi |
|
| 125 |
124
|
3adant3 |
|
| 126 |
125
|
ad2antlr |
|
| 127 |
1 5 2 3 4
|
islindeps |
|
| 128 |
41 126 127
|
syl2anc |
|
| 129 |
123 128
|
mpbird |
|
| 130 |
129
|
ex |
|