| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincresunit3lem3.b |
|
| 2 |
|
lincresunit3lem3.r |
|
| 3 |
|
lincresunit3lem3.e |
|
| 4 |
|
lincresunit3lem3.u |
|
| 5 |
|
lincresunit3lem3.n |
|
| 6 |
|
lincresunit3lem3.t |
|
| 7 |
|
3simpa |
|
| 8 |
7
|
adantr |
|
| 9 |
|
eqid |
|
| 10 |
1 2 6 9
|
lmodvs1 |
|
| 11 |
8 10
|
syl |
|
| 12 |
2
|
lmodring |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
13
|
adantr |
|
| 15 |
4 5
|
unitnegcl |
|
| 16 |
12 15
|
sylan |
|
| 17 |
16
|
3ad2antl1 |
|
| 18 |
14 17
|
jca |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
4 19 20 9
|
unitlinv |
|
| 22 |
18 21
|
syl |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
oveq1d |
|
| 25 |
11 24
|
eqtr3d |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpl1 |
|
| 28 |
4 19 3
|
ringinvcl |
|
| 29 |
18 28
|
syl |
|
| 30 |
2
|
lmodfgrp |
|
| 31 |
30
|
3ad2ant1 |
|
| 32 |
3 4
|
unitcl |
|
| 33 |
3 5
|
grpinvcl |
|
| 34 |
31 32 33
|
syl2an |
|
| 35 |
|
simpl2 |
|
| 36 |
29 34 35
|
3jca |
|
| 37 |
27 36
|
jca |
|
| 38 |
37
|
adantr |
|
| 39 |
1 2 6 3 20
|
lmodvsass |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
adantl |
|
| 43 |
27
|
adantr |
|
| 44 |
|
simpl3 |
|
| 45 |
29 34 44
|
3jca |
|
| 46 |
45
|
adantr |
|
| 47 |
43 46
|
jca |
|
| 48 |
1 2 6 3 20
|
lmodvsass |
|
| 49 |
47 48
|
syl |
|
| 50 |
18
|
adantr |
|
| 51 |
50 21
|
syl |
|
| 52 |
51
|
oveq1d |
|
| 53 |
49 52
|
eqtr3d |
|
| 54 |
40 42 53
|
3eqtrd |
|
| 55 |
|
3simpb |
|
| 56 |
55
|
adantr |
|
| 57 |
56
|
adantr |
|
| 58 |
1 2 6 9
|
lmodvs1 |
|
| 59 |
57 58
|
syl |
|
| 60 |
26 54 59
|
3eqtrd |
|
| 61 |
60
|
ex |
|
| 62 |
|
oveq2 |
|
| 63 |
61 62
|
impbid1 |
|