Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit3lem3.b |
|
2 |
|
lincresunit3lem3.r |
|
3 |
|
lincresunit3lem3.e |
|
4 |
|
lincresunit3lem3.u |
|
5 |
|
lincresunit3lem3.n |
|
6 |
|
lincresunit3lem3.t |
|
7 |
|
3simpa |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
1 2 6 9
|
lmodvs1 |
|
11 |
8 10
|
syl |
|
12 |
2
|
lmodring |
|
13 |
12
|
3ad2ant1 |
|
14 |
13
|
adantr |
|
15 |
4 5
|
unitnegcl |
|
16 |
12 15
|
sylan |
|
17 |
16
|
3ad2antl1 |
|
18 |
14 17
|
jca |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
4 19 20 9
|
unitlinv |
|
22 |
18 21
|
syl |
|
23 |
22
|
eqcomd |
|
24 |
23
|
oveq1d |
|
25 |
11 24
|
eqtr3d |
|
26 |
25
|
adantr |
|
27 |
|
simpl1 |
|
28 |
4 19 3
|
ringinvcl |
|
29 |
18 28
|
syl |
|
30 |
2
|
lmodfgrp |
|
31 |
30
|
3ad2ant1 |
|
32 |
3 4
|
unitcl |
|
33 |
3 5
|
grpinvcl |
|
34 |
31 32 33
|
syl2an |
|
35 |
|
simpl2 |
|
36 |
29 34 35
|
3jca |
|
37 |
27 36
|
jca |
|
38 |
37
|
adantr |
|
39 |
1 2 6 3 20
|
lmodvsass |
|
40 |
38 39
|
syl |
|
41 |
|
oveq2 |
|
42 |
41
|
adantl |
|
43 |
27
|
adantr |
|
44 |
|
simpl3 |
|
45 |
29 34 44
|
3jca |
|
46 |
45
|
adantr |
|
47 |
43 46
|
jca |
|
48 |
1 2 6 3 20
|
lmodvsass |
|
49 |
47 48
|
syl |
|
50 |
18
|
adantr |
|
51 |
50 21
|
syl |
|
52 |
51
|
oveq1d |
|
53 |
49 52
|
eqtr3d |
|
54 |
40 42 53
|
3eqtrd |
|
55 |
|
3simpb |
|
56 |
55
|
adantr |
|
57 |
56
|
adantr |
|
58 |
1 2 6 9
|
lmodvs1 |
|
59 |
57 58
|
syl |
|
60 |
26 54 59
|
3eqtrd |
|
61 |
60
|
ex |
|
62 |
|
oveq2 |
|
63 |
61 62
|
impbid1 |
|