Step |
Hyp |
Ref |
Expression |
1 |
|
snlindsntor.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
snlindsntor.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
snlindsntor.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
4 |
|
snlindsntor.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
snlindsntor.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
6 |
|
snlindsntor.t |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
7 |
|
df-ne |
⊢ ( ( 𝑠 · 𝑋 ) ≠ 𝑍 ↔ ¬ ( 𝑠 · 𝑋 ) = 𝑍 ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑠 ∈ ( 𝑆 ∖ { 0 } ) ( 𝑠 · 𝑋 ) ≠ 𝑍 ↔ ∀ 𝑠 ∈ ( 𝑆 ∖ { 0 } ) ¬ ( 𝑠 · 𝑋 ) = 𝑍 ) |
9 |
|
raldifsni |
⊢ ( ∀ 𝑠 ∈ ( 𝑆 ∖ { 0 } ) ¬ ( 𝑠 · 𝑋 ) = 𝑍 ↔ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) |
10 |
8 9
|
bitri |
⊢ ( ∀ 𝑠 ∈ ( 𝑆 ∖ { 0 } ) ( 𝑠 · 𝑋 ) ≠ 𝑍 ↔ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) |
11 |
|
simpl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → 𝑀 ∈ LMod ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → 𝑀 ∈ LMod ) |
13 |
12
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 𝑀 ∈ LMod ) |
14 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
15 |
3 14
|
eqtri |
⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
16 |
15
|
oveq1i |
⊢ ( 𝑆 ↑m { 𝑋 } ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑋 } ) |
17 |
16
|
eleq2i |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ↔ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑋 } ) ) |
18 |
17
|
biimpi |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) → 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑋 } ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑋 } ) ) |
20 |
|
snelpwi |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑀 ) → { 𝑋 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
21 |
20 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
22 |
21
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → { 𝑋 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
23 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m { 𝑋 } ) ∧ { 𝑋 } ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
24 |
13 19 22 23
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
25 |
24
|
eqeq1d |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ↔ ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = 𝑍 ) ) |
26 |
25
|
anbi2d |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) ↔ ( 𝑓 finSupp 0 ∧ ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = 𝑍 ) ) ) |
27 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
28 |
27
|
grpmndd |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Mnd ) |
29 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 𝑀 ∈ Mnd ) |
30 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 𝑋 ∈ 𝐵 ) |
31 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) → 𝑓 : { 𝑋 } ⟶ 𝑆 ) |
32 |
12
|
adantl |
⊢ ( ( 𝑓 : { 𝑋 } ⟶ 𝑆 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ) → 𝑀 ∈ LMod ) |
33 |
|
snidg |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ { 𝑋 } ) |
34 |
33
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ { 𝑋 } ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → 𝑋 ∈ { 𝑋 } ) |
36 |
|
ffvelrn |
⊢ ( ( 𝑓 : { 𝑋 } ⟶ 𝑆 ∧ 𝑋 ∈ { 𝑋 } ) → ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ) |
37 |
35 36
|
sylan2 |
⊢ ( ( 𝑓 : { 𝑋 } ⟶ 𝑆 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ) → ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ) |
38 |
|
simprlr |
⊢ ( ( 𝑓 : { 𝑋 } ⟶ 𝑆 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ) → 𝑋 ∈ 𝐵 ) |
39 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
40 |
1 2 39 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
41 |
32 37 38 40
|
syl3anc |
⊢ ( ( 𝑓 : { 𝑋 } ⟶ 𝑆 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ) → ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
42 |
41
|
expcom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → ( 𝑓 : { 𝑋 } ⟶ 𝑆 → ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) ) |
43 |
31 42
|
syl5com |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) → ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) ) |
44 |
43
|
impcom |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
45 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑋 ) ) |
46 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
47 |
45 46
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
48 |
1 47
|
gsumsn |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
49 |
29 30 44 48
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
50 |
49
|
eqeq1d |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = 𝑍 ↔ ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 ) ) |
51 |
33 36
|
sylan2 |
⊢ ( ( 𝑓 : { 𝑋 } ⟶ 𝑆 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ) |
52 |
51
|
expcom |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑓 : { 𝑋 } ⟶ 𝑆 → ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( 𝑓 : { 𝑋 } ⟶ 𝑆 → ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ) ) |
54 |
6
|
oveqi |
⊢ ( ( 𝑓 ‘ 𝑋 ) · 𝑋 ) = ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) |
55 |
54
|
eqeq1i |
⊢ ( ( ( 𝑓 ‘ 𝑋 ) · 𝑋 ) = 𝑍 ↔ ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 ) |
56 |
|
oveq1 |
⊢ ( 𝑠 = ( 𝑓 ‘ 𝑋 ) → ( 𝑠 · 𝑋 ) = ( ( 𝑓 ‘ 𝑋 ) · 𝑋 ) ) |
57 |
56
|
eqeq1d |
⊢ ( 𝑠 = ( 𝑓 ‘ 𝑋 ) → ( ( 𝑠 · 𝑋 ) = 𝑍 ↔ ( ( 𝑓 ‘ 𝑋 ) · 𝑋 ) = 𝑍 ) ) |
58 |
|
eqeq1 |
⊢ ( 𝑠 = ( 𝑓 ‘ 𝑋 ) → ( 𝑠 = 0 ↔ ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
59 |
57 58
|
imbi12d |
⊢ ( 𝑠 = ( 𝑓 ‘ 𝑋 ) → ( ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ↔ ( ( ( 𝑓 ‘ 𝑋 ) · 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
60 |
59
|
rspcva |
⊢ ( ( ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → ( ( ( 𝑓 ‘ 𝑋 ) · 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
61 |
55 60
|
syl5bir |
⊢ ( ( ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → ( ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
62 |
61
|
ex |
⊢ ( ( 𝑓 ‘ 𝑋 ) ∈ 𝑆 → ( ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) → ( ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
63 |
31 53 62
|
syl56 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) → ( ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) → ( ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) ) |
64 |
63
|
com23 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) → ( 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) → ( ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) ) |
65 |
64
|
imp31 |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( ( 𝑓 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
66 |
50 65
|
sylbid |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
67 |
66
|
adantld |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑀 Σg ( 𝑥 ∈ { 𝑋 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
68 |
26 67
|
sylbid |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
69 |
68
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) → ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
70 |
69
|
ex |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) → ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
71 |
|
impexp |
⊢ ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ↔ ( 𝑓 finSupp 0 → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
72 |
31
|
adantl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 𝑓 : { 𝑋 } ⟶ 𝑆 ) |
73 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
74 |
73
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → { 𝑋 } ∈ Fin ) |
75 |
4
|
fvexi |
⊢ 0 ∈ V |
76 |
75
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 0 ∈ V ) |
77 |
72 74 76
|
fdmfifsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → 𝑓 finSupp 0 ) |
78 |
|
pm2.27 |
⊢ ( 𝑓 finSupp 0 → ( ( 𝑓 finSupp 0 → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
79 |
77 78
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( 𝑓 finSupp 0 → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
80 |
71 79
|
syl5bi |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) → ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
81 |
80
|
ralimdva |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) → ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
82 |
1 2 3 4 5 6
|
snlindsntorlem |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 → ( 𝑓 ‘ 𝑋 ) = 0 ) → ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ) |
83 |
81 82
|
syld |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) → ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ) ) |
84 |
70 83
|
impbid |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ↔ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ) ) |
85 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑓 ‘ 𝑦 ) = 0 ↔ ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
86 |
85
|
ralsng |
⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ↔ ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ↔ ( 𝑓 ‘ 𝑋 ) = 0 ) ) |
88 |
87
|
bicomd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑋 ) = 0 ↔ ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) |
89 |
88
|
imbi2d |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) |
90 |
89
|
ralbidv |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ( 𝑓 ‘ 𝑋 ) = 0 ) ↔ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) |
91 |
|
snelpwi |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 } ∈ 𝒫 𝐵 ) |
92 |
91
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → { 𝑋 } ∈ 𝒫 𝐵 ) |
93 |
92
|
biantrurd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ↔ ( { 𝑋 } ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) ) |
94 |
84 90 93
|
3bitrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝑆 ( ( 𝑠 · 𝑋 ) = 𝑍 → 𝑠 = 0 ) ↔ ( { 𝑋 } ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) ) |
95 |
10 94
|
syl5bb |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ ( 𝑆 ∖ { 0 } ) ( 𝑠 · 𝑋 ) ≠ 𝑍 ↔ ( { 𝑋 } ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) ) |
96 |
|
snex |
⊢ { 𝑋 } ∈ V |
97 |
1 5 2 3 4
|
islininds |
⊢ ( ( { 𝑋 } ∈ V ∧ 𝑀 ∈ LMod ) → ( { 𝑋 } linIndS 𝑀 ↔ ( { 𝑋 } ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) ) |
98 |
96 11 97
|
sylancr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( { 𝑋 } linIndS 𝑀 ↔ ( { 𝑋 } ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝑆 ↑m { 𝑋 } ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) { 𝑋 } ) = 𝑍 ) → ∀ 𝑦 ∈ { 𝑋 } ( 𝑓 ‘ 𝑦 ) = 0 ) ) ) ) |
99 |
95 98
|
bitr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ ( 𝑆 ∖ { 0 } ) ( 𝑠 · 𝑋 ) ≠ 𝑍 ↔ { 𝑋 } linIndS 𝑀 ) ) |