Step |
Hyp |
Ref |
Expression |
1 |
|
lindsrng01.b |
|- B = ( Base ` M ) |
2 |
|
lindsrng01.r |
|- R = ( Scalar ` M ) |
3 |
|
lindsrng01.e |
|- E = ( Base ` R ) |
4 |
2 3
|
lmodsn0 |
|- ( M e. LMod -> E =/= (/) ) |
5 |
3
|
fvexi |
|- E e. _V |
6 |
|
hasheq0 |
|- ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
7 |
5 6
|
ax-mp |
|- ( ( # ` E ) = 0 <-> E = (/) ) |
8 |
|
eqneqall |
|- ( E = (/) -> ( E =/= (/) -> S linIndS M ) ) |
9 |
8
|
com12 |
|- ( E =/= (/) -> ( E = (/) -> S linIndS M ) ) |
10 |
7 9
|
syl5bi |
|- ( E =/= (/) -> ( ( # ` E ) = 0 -> S linIndS M ) ) |
11 |
4 10
|
syl |
|- ( M e. LMod -> ( ( # ` E ) = 0 -> S linIndS M ) ) |
12 |
11
|
adantr |
|- ( ( M e. LMod /\ S e. ~P B ) -> ( ( # ` E ) = 0 -> S linIndS M ) ) |
13 |
12
|
com12 |
|- ( ( # ` E ) = 0 -> ( ( M e. LMod /\ S e. ~P B ) -> S linIndS M ) ) |
14 |
2
|
lmodring |
|- ( M e. LMod -> R e. Ring ) |
15 |
14
|
adantr |
|- ( ( M e. LMod /\ S e. ~P B ) -> R e. Ring ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
3 16
|
0ring |
|- ( ( R e. Ring /\ ( # ` E ) = 1 ) -> E = { ( 0g ` R ) } ) |
18 |
15 17
|
sylan |
|- ( ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) -> E = { ( 0g ` R ) } ) |
19 |
|
simpr |
|- ( ( M e. LMod /\ S e. ~P B ) -> S e. ~P B ) |
20 |
19
|
adantr |
|- ( ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) -> S e. ~P B ) |
21 |
20
|
adantl |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> S e. ~P B ) |
22 |
|
snex |
|- { ( 0g ` R ) } e. _V |
23 |
20 22
|
jctil |
|- ( ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) -> ( { ( 0g ` R ) } e. _V /\ S e. ~P B ) ) |
24 |
23
|
adantl |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( { ( 0g ` R ) } e. _V /\ S e. ~P B ) ) |
25 |
|
elmapg |
|- ( ( { ( 0g ` R ) } e. _V /\ S e. ~P B ) -> ( f e. ( { ( 0g ` R ) } ^m S ) <-> f : S --> { ( 0g ` R ) } ) ) |
26 |
24 25
|
syl |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( f e. ( { ( 0g ` R ) } ^m S ) <-> f : S --> { ( 0g ` R ) } ) ) |
27 |
|
fvex |
|- ( 0g ` R ) e. _V |
28 |
27
|
fconst2 |
|- ( f : S --> { ( 0g ` R ) } <-> f = ( S X. { ( 0g ` R ) } ) ) |
29 |
|
fconstmpt |
|- ( S X. { ( 0g ` R ) } ) = ( x e. S |-> ( 0g ` R ) ) |
30 |
29
|
eqeq2i |
|- ( f = ( S X. { ( 0g ` R ) } ) <-> f = ( x e. S |-> ( 0g ` R ) ) ) |
31 |
28 30
|
bitri |
|- ( f : S --> { ( 0g ` R ) } <-> f = ( x e. S |-> ( 0g ` R ) ) ) |
32 |
|
eqidd |
|- ( ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) /\ v e. S ) -> ( x e. S |-> ( 0g ` R ) ) = ( x e. S |-> ( 0g ` R ) ) ) |
33 |
|
eqidd |
|- ( ( ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) /\ v e. S ) /\ x = v ) -> ( 0g ` R ) = ( 0g ` R ) ) |
34 |
|
simpr |
|- ( ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) /\ v e. S ) -> v e. S ) |
35 |
|
fvexd |
|- ( ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) /\ v e. S ) -> ( 0g ` R ) e. _V ) |
36 |
32 33 34 35
|
fvmptd |
|- ( ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) /\ v e. S ) -> ( ( x e. S |-> ( 0g ` R ) ) ` v ) = ( 0g ` R ) ) |
37 |
36
|
ralrimiva |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> A. v e. S ( ( x e. S |-> ( 0g ` R ) ) ` v ) = ( 0g ` R ) ) |
38 |
37
|
a1d |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( ( ( x e. S |-> ( 0g ` R ) ) finSupp ( 0g ` R ) /\ ( ( x e. S |-> ( 0g ` R ) ) ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( ( x e. S |-> ( 0g ` R ) ) ` v ) = ( 0g ` R ) ) ) |
39 |
|
breq1 |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( f finSupp ( 0g ` R ) <-> ( x e. S |-> ( 0g ` R ) ) finSupp ( 0g ` R ) ) ) |
40 |
|
oveq1 |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( f ( linC ` M ) S ) = ( ( x e. S |-> ( 0g ` R ) ) ( linC ` M ) S ) ) |
41 |
40
|
eqeq1d |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( ( f ( linC ` M ) S ) = ( 0g ` M ) <-> ( ( x e. S |-> ( 0g ` R ) ) ( linC ` M ) S ) = ( 0g ` M ) ) ) |
42 |
39 41
|
anbi12d |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) <-> ( ( x e. S |-> ( 0g ` R ) ) finSupp ( 0g ` R ) /\ ( ( x e. S |-> ( 0g ` R ) ) ( linC ` M ) S ) = ( 0g ` M ) ) ) ) |
43 |
|
fveq1 |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( f ` v ) = ( ( x e. S |-> ( 0g ` R ) ) ` v ) ) |
44 |
43
|
eqeq1d |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( ( f ` v ) = ( 0g ` R ) <-> ( ( x e. S |-> ( 0g ` R ) ) ` v ) = ( 0g ` R ) ) ) |
45 |
44
|
ralbidv |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( A. v e. S ( f ` v ) = ( 0g ` R ) <-> A. v e. S ( ( x e. S |-> ( 0g ` R ) ) ` v ) = ( 0g ` R ) ) ) |
46 |
42 45
|
imbi12d |
|- ( f = ( x e. S |-> ( 0g ` R ) ) -> ( ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) <-> ( ( ( x e. S |-> ( 0g ` R ) ) finSupp ( 0g ` R ) /\ ( ( x e. S |-> ( 0g ` R ) ) ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( ( x e. S |-> ( 0g ` R ) ) ` v ) = ( 0g ` R ) ) ) ) |
47 |
38 46
|
syl5ibrcom |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( f = ( x e. S |-> ( 0g ` R ) ) -> ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) |
48 |
31 47
|
syl5bi |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( f : S --> { ( 0g ` R ) } -> ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) |
49 |
26 48
|
sylbid |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( f e. ( { ( 0g ` R ) } ^m S ) -> ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) |
50 |
49
|
ralrimiv |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> A. f e. ( { ( 0g ` R ) } ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) |
51 |
|
oveq1 |
|- ( E = { ( 0g ` R ) } -> ( E ^m S ) = ( { ( 0g ` R ) } ^m S ) ) |
52 |
51
|
raleqdv |
|- ( E = { ( 0g ` R ) } -> ( A. f e. ( E ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) <-> A. f e. ( { ( 0g ` R ) } ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) |
53 |
52
|
adantr |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( A. f e. ( E ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) <-> A. f e. ( { ( 0g ` R ) } ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) |
54 |
50 53
|
mpbird |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> A. f e. ( E ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) |
55 |
|
simpl |
|- ( ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) -> ( M e. LMod /\ S e. ~P B ) ) |
56 |
55
|
ancomd |
|- ( ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) -> ( S e. ~P B /\ M e. LMod ) ) |
57 |
56
|
adantl |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( S e. ~P B /\ M e. LMod ) ) |
58 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
59 |
1 58 2 3 16
|
islininds |
|- ( ( S e. ~P B /\ M e. LMod ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) ) |
60 |
57 59
|
syl |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp ( 0g ` R ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. v e. S ( f ` v ) = ( 0g ` R ) ) ) ) ) |
61 |
21 54 60
|
mpbir2and |
|- ( ( E = { ( 0g ` R ) } /\ ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) ) -> S linIndS M ) |
62 |
18 61
|
mpancom |
|- ( ( ( M e. LMod /\ S e. ~P B ) /\ ( # ` E ) = 1 ) -> S linIndS M ) |
63 |
62
|
expcom |
|- ( ( # ` E ) = 1 -> ( ( M e. LMod /\ S e. ~P B ) -> S linIndS M ) ) |
64 |
13 63
|
jaoi |
|- ( ( ( # ` E ) = 0 \/ ( # ` E ) = 1 ) -> ( ( M e. LMod /\ S e. ~P B ) -> S linIndS M ) ) |
65 |
64
|
expd |
|- ( ( ( # ` E ) = 0 \/ ( # ` E ) = 1 ) -> ( M e. LMod -> ( S e. ~P B -> S linIndS M ) ) ) |
66 |
65
|
com12 |
|- ( M e. LMod -> ( ( ( # ` E ) = 0 \/ ( # ` E ) = 1 ) -> ( S e. ~P B -> S linIndS M ) ) ) |
67 |
66
|
3imp |
|- ( ( M e. LMod /\ ( ( # ` E ) = 0 \/ ( # ` E ) = 1 ) /\ S e. ~P B ) -> S linIndS M ) |