| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
ifbid |
|
| 7 |
6
|
cbvmptv |
|
| 8 |
1 2 3 4 7
|
mptcfsupp |
|
| 9 |
8
|
3adant1r |
|
| 10 |
|
simp1l |
|
| 11 |
|
simp2 |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
1 2 3 4 12 13
|
linc0scn0 |
|
| 15 |
10 11 14
|
syl2anc |
|
| 16 |
|
simp3 |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
neeq1d |
|
| 19 |
18
|
adantl |
|
| 20 |
|
iftrue |
|
| 21 |
|
fvexd |
|
| 22 |
13 20 16 21
|
fvmptd3 |
|
| 23 |
2
|
lmodring |
|
| 24 |
23
|
anim1i |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
|
eqid |
|
| 27 |
26 4 3
|
ring1ne0 |
|
| 28 |
25 27
|
syl |
|
| 29 |
22 28
|
eqnetrd |
|
| 30 |
16 19 29
|
rspcedvd |
|
| 31 |
2 26 4
|
lmod1cl |
|
| 32 |
2 26 3
|
lmod0cl |
|
| 33 |
31 32
|
ifcld |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
fmpttd |
|
| 38 |
|
fvexd |
|
| 39 |
38 11
|
elmapd |
|
| 40 |
37 39
|
mpbird |
|
| 41 |
|
breq1 |
|
| 42 |
|
oveq1 |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
|
fveq1 |
|
| 45 |
44
|
neeq1d |
|
| 46 |
45
|
rexbidv |
|
| 47 |
41 43 46
|
3anbi123d |
|
| 48 |
47
|
adantl |
|
| 49 |
40 48
|
rspcedv |
|
| 50 |
9 15 30 49
|
mp3and |
|
| 51 |
1 12 2 26 3
|
islindeps |
|
| 52 |
10 11 51
|
syl2anc |
|
| 53 |
50 52
|
mpbird |
|