Metamath Proof Explorer


Theorem el0ldep

Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion el0ldep M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S S linDepS M

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid Scalar M = Scalar M
3 eqid 0 Scalar M = 0 Scalar M
4 eqid 1 Scalar M = 1 Scalar M
5 eqeq1 s = y s = 0 M y = 0 M
6 5 ifbid s = y if s = 0 M 1 Scalar M 0 Scalar M = if y = 0 M 1 Scalar M 0 Scalar M
7 6 cbvmptv s S if s = 0 M 1 Scalar M 0 Scalar M = y S if y = 0 M 1 Scalar M 0 Scalar M
8 1 2 3 4 7 mptcfsupp M LMod S 𝒫 Base M 0 M S finSupp 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M
9 8 3adant1r M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S finSupp 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M
10 simp1l M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S M LMod
11 simp2 M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S S 𝒫 Base M
12 eqid 0 M = 0 M
13 eqid s S if s = 0 M 1 Scalar M 0 Scalar M = s S if s = 0 M 1 Scalar M 0 Scalar M
14 1 2 3 4 12 13 linc0scn0 M LMod S 𝒫 Base M s S if s = 0 M 1 Scalar M 0 Scalar M linC M S = 0 M
15 10 11 14 syl2anc M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M linC M S = 0 M
16 simp3 M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S 0 M S
17 fveq2 x = 0 M s S if s = 0 M 1 Scalar M 0 Scalar M x = s S if s = 0 M 1 Scalar M 0 Scalar M 0 M
18 17 neeq1d x = 0 M s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M 0 M 0 Scalar M
19 18 adantl M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S x = 0 M s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M 0 M 0 Scalar M
20 iftrue s = 0 M if s = 0 M 1 Scalar M 0 Scalar M = 1 Scalar M
21 fvexd M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S 1 Scalar M V
22 13 20 16 21 fvmptd3 M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M 0 M = 1 Scalar M
23 2 lmodring M LMod Scalar M Ring
24 23 anim1i M LMod 1 < Base Scalar M Scalar M Ring 1 < Base Scalar M
25 24 3ad2ant1 M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S Scalar M Ring 1 < Base Scalar M
26 eqid Base Scalar M = Base Scalar M
27 26 4 3 ring1ne0 Scalar M Ring 1 < Base Scalar M 1 Scalar M 0 Scalar M
28 25 27 syl M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S 1 Scalar M 0 Scalar M
29 22 28 eqnetrd M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M 0 M 0 Scalar M
30 16 19 29 rspcedvd M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S x S s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M
31 2 26 4 lmod1cl M LMod 1 Scalar M Base Scalar M
32 2 26 3 lmod0cl M LMod 0 Scalar M Base Scalar M
33 31 32 ifcld M LMod if s = 0 M 1 Scalar M 0 Scalar M Base Scalar M
34 33 adantr M LMod 1 < Base Scalar M if s = 0 M 1 Scalar M 0 Scalar M Base Scalar M
35 34 3ad2ant1 M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S if s = 0 M 1 Scalar M 0 Scalar M Base Scalar M
36 35 adantr M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M Base Scalar M
37 36 fmpttd M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M : S Base Scalar M
38 fvexd M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S Base Scalar M V
39 38 11 elmapd M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M Base Scalar M S s S if s = 0 M 1 Scalar M 0 Scalar M : S Base Scalar M
40 37 39 mpbird M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S s S if s = 0 M 1 Scalar M 0 Scalar M Base Scalar M S
41 breq1 f = s S if s = 0 M 1 Scalar M 0 Scalar M finSupp 0 Scalar M f finSupp 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M
42 oveq1 f = s S if s = 0 M 1 Scalar M 0 Scalar M f linC M S = s S if s = 0 M 1 Scalar M 0 Scalar M linC M S
43 42 eqeq1d f = s S if s = 0 M 1 Scalar M 0 Scalar M f linC M S = 0 M s S if s = 0 M 1 Scalar M 0 Scalar M linC M S = 0 M
44 fveq1 f = s S if s = 0 M 1 Scalar M 0 Scalar M f x = s S if s = 0 M 1 Scalar M 0 Scalar M x
45 44 neeq1d f = s S if s = 0 M 1 Scalar M 0 Scalar M f x 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M
46 45 rexbidv f = s S if s = 0 M 1 Scalar M 0 Scalar M x S f x 0 Scalar M x S s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M
47 41 43 46 3anbi123d f = s S if s = 0 M 1 Scalar M 0 Scalar M finSupp 0 Scalar M f f linC M S = 0 M x S f x 0 Scalar M finSupp 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M linC M S = 0 M x S s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M
48 47 adantl M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S f = s S if s = 0 M 1 Scalar M 0 Scalar M finSupp 0 Scalar M f f linC M S = 0 M x S f x 0 Scalar M finSupp 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M linC M S = 0 M x S s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M
49 40 48 rspcedv M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S finSupp 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M s S if s = 0 M 1 Scalar M 0 Scalar M linC M S = 0 M x S s S if s = 0 M 1 Scalar M 0 Scalar M x 0 Scalar M f Base Scalar M S finSupp 0 Scalar M f f linC M S = 0 M x S f x 0 Scalar M
50 9 15 30 49 mp3and M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S f Base Scalar M S finSupp 0 Scalar M f f linC M S = 0 M x S f x 0 Scalar M
51 1 12 2 26 3 islindeps M LMod S 𝒫 Base M S linDepS M f Base Scalar M S finSupp 0 Scalar M f f linC M S = 0 M x S f x 0 Scalar M
52 10 11 51 syl2anc M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S S linDepS M f Base Scalar M S finSupp 0 Scalar M f f linC M S = 0 M x S f x 0 Scalar M
53 50 52 mpbird M LMod 1 < Base Scalar M S 𝒫 Base M 0 M S S linDepS M