Step |
Hyp |
Ref |
Expression |
1 |
|
ral0 |
|- A. x e. (/) ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) |
2 |
1
|
2a1i |
|- ( M e. V -> ( ( (/) finSupp ( 0g ` ( Scalar ` M ) ) /\ ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) |
3 |
|
0ex |
|- (/) e. _V |
4 |
|
breq1 |
|- ( f = (/) -> ( f finSupp ( 0g ` ( Scalar ` M ) ) <-> (/) finSupp ( 0g ` ( Scalar ` M ) ) ) ) |
5 |
|
oveq1 |
|- ( f = (/) -> ( f ( linC ` M ) (/) ) = ( (/) ( linC ` M ) (/) ) ) |
6 |
5
|
eqeq1d |
|- ( f = (/) -> ( ( f ( linC ` M ) (/) ) = ( 0g ` M ) <-> ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) ) |
7 |
4 6
|
anbi12d |
|- ( f = (/) -> ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) <-> ( (/) finSupp ( 0g ` ( Scalar ` M ) ) /\ ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) ) ) |
8 |
|
fveq1 |
|- ( f = (/) -> ( f ` x ) = ( (/) ` x ) ) |
9 |
8
|
eqeq1d |
|- ( f = (/) -> ( ( f ` x ) = ( 0g ` ( Scalar ` M ) ) <-> ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) |
10 |
9
|
ralbidv |
|- ( f = (/) -> ( A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) <-> A. x e. (/) ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) |
11 |
7 10
|
imbi12d |
|- ( f = (/) -> ( ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) <-> ( ( (/) finSupp ( 0g ` ( Scalar ` M ) ) /\ ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) |
12 |
11
|
ralsng |
|- ( (/) e. _V -> ( A. f e. { (/) } ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) <-> ( ( (/) finSupp ( 0g ` ( Scalar ` M ) ) /\ ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) |
13 |
3 12
|
mp1i |
|- ( M e. V -> ( A. f e. { (/) } ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) <-> ( ( (/) finSupp ( 0g ` ( Scalar ` M ) ) /\ ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( (/) ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) |
14 |
2 13
|
mpbird |
|- ( M e. V -> A. f e. { (/) } ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) |
15 |
|
fvex |
|- ( Base ` ( Scalar ` M ) ) e. _V |
16 |
|
map0e |
|- ( ( Base ` ( Scalar ` M ) ) e. _V -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
17 |
15 16
|
mp1i |
|- ( M e. V -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
18 |
|
df1o2 |
|- 1o = { (/) } |
19 |
17 18
|
eqtrdi |
|- ( M e. V -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = { (/) } ) |
20 |
19
|
raleqdv |
|- ( M e. V -> ( A. f e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) <-> A. f e. { (/) } ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) |
21 |
14 20
|
mpbird |
|- ( M e. V -> A. f e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) |
22 |
|
0elpw |
|- (/) e. ~P ( Base ` M ) |
23 |
21 22
|
jctil |
|- ( M e. V -> ( (/) e. ~P ( Base ` M ) /\ A. f e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) |
24 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
25 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
26 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
27 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
28 |
|
eqid |
|- ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) |
29 |
24 25 26 27 28
|
islininds |
|- ( ( (/) e. _V /\ M e. V ) -> ( (/) linIndS M <-> ( (/) e. ~P ( Base ` M ) /\ A. f e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) ) |
30 |
3 29
|
mpan |
|- ( M e. V -> ( (/) linIndS M <-> ( (/) e. ~P ( Base ` M ) /\ A. f e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) (/) ) = ( 0g ` M ) ) -> A. x e. (/) ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) ) |
31 |
23 30
|
mpbird |
|- ( M e. V -> (/) linIndS M ) |