| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmat22.m |
|- M = ( litMat ` <" <" A B "> <" C D "> "> ) |
| 2 |
|
lmat22.a |
|- ( ph -> A e. V ) |
| 3 |
|
lmat22.b |
|- ( ph -> B e. V ) |
| 4 |
|
lmat22.c |
|- ( ph -> C e. V ) |
| 5 |
|
lmat22.d |
|- ( ph -> D e. V ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
6
|
a1i |
|- ( ph -> 2 e. NN ) |
| 8 |
2 3
|
s2cld |
|- ( ph -> <" A B "> e. Word V ) |
| 9 |
4 5
|
s2cld |
|- ( ph -> <" C D "> e. Word V ) |
| 10 |
8 9
|
s2cld |
|- ( ph -> <" <" A B "> <" C D "> "> e. Word Word V ) |
| 11 |
|
s2len |
|- ( # ` <" <" A B "> <" C D "> "> ) = 2 |
| 12 |
11
|
a1i |
|- ( ph -> ( # ` <" <" A B "> <" C D "> "> ) = 2 ) |
| 13 |
1 2 3 4 5
|
lmat22lem |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 14 |
|
1nn0 |
|- 1 e. NN0 |
| 15 |
|
0nn0 |
|- 0 e. NN0 |
| 16 |
6
|
nnrei |
|- 2 e. RR |
| 17 |
16
|
leidi |
|- 2 <_ 2 |
| 18 |
|
1le2 |
|- 1 <_ 2 |
| 19 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 20 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 21 |
|
s2cli |
|- <" C D "> e. Word _V |
| 22 |
|
s2fv1 |
|- ( <" C D "> e. Word _V -> ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> ) |
| 23 |
21 22
|
ax-mp |
|- ( <" <" A B "> <" C D "> "> ` 1 ) = <" C D "> |
| 24 |
|
s2fv0 |
|- ( C e. V -> ( <" C D "> ` 0 ) = C ) |
| 25 |
4 24
|
syl |
|- ( ph -> ( <" C D "> ` 0 ) = C ) |
| 26 |
1 7 10 12 13 14 15 17 18 19 20 23 25
|
lmatfvlem |
|- ( ph -> ( 2 M 1 ) = C ) |