| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmff.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
lmff.3 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
lmff.4 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
lmcls.5 |
|- ( ph -> F ( ~~>t ` J ) P ) |
| 5 |
|
lmcls.7 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. S ) |
| 6 |
|
lmcld.8 |
|- ( ph -> S e. ( Clsd ` J ) ) |
| 7 |
|
eqid |
|- U. J = U. J |
| 8 |
7
|
cldss |
|- ( S e. ( Clsd ` J ) -> S C_ U. J ) |
| 9 |
6 8
|
syl |
|- ( ph -> S C_ U. J ) |
| 10 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
| 11 |
2 10
|
syl |
|- ( ph -> X = U. J ) |
| 12 |
9 11
|
sseqtrrd |
|- ( ph -> S C_ X ) |
| 13 |
1 2 3 4 5 12
|
lmcls |
|- ( ph -> P e. ( ( cls ` J ) ` S ) ) |
| 14 |
|
cldcls |
|- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S ) |
| 15 |
6 14
|
syl |
|- ( ph -> ( ( cls ` J ) ` S ) = S ) |
| 16 |
13 15
|
eleqtrd |
|- ( ph -> P e. S ) |