Metamath Proof Explorer


Theorem lmcld

Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)

Ref Expression
Hypotheses lmff.1 𝑍 = ( ℤ𝑀 )
lmff.3 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
lmff.4 ( 𝜑𝑀 ∈ ℤ )
lmcls.5 ( 𝜑𝐹 ( ⇝𝑡𝐽 ) 𝑃 )
lmcls.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ 𝑆 )
lmcld.8 ( 𝜑𝑆 ∈ ( Clsd ‘ 𝐽 ) )
Assertion lmcld ( 𝜑𝑃𝑆 )

Proof

Step Hyp Ref Expression
1 lmff.1 𝑍 = ( ℤ𝑀 )
2 lmff.3 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 lmff.4 ( 𝜑𝑀 ∈ ℤ )
4 lmcls.5 ( 𝜑𝐹 ( ⇝𝑡𝐽 ) 𝑃 )
5 lmcls.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ 𝑆 )
6 lmcld.8 ( 𝜑𝑆 ∈ ( Clsd ‘ 𝐽 ) )
7 eqid 𝐽 = 𝐽
8 7 cldss ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 𝐽 )
9 6 8 syl ( 𝜑𝑆 𝐽 )
10 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
11 2 10 syl ( 𝜑𝑋 = 𝐽 )
12 9 11 sseqtrrd ( 𝜑𝑆𝑋 )
13 1 2 3 4 5 12 lmcls ( 𝜑𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
14 cldcls ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 )
15 6 14 syl ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 )
16 13 15 eleqtrd ( 𝜑𝑃𝑆 )