Metamath Proof Explorer


Theorem lmcld

Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)

Ref Expression
Hypotheses lmff.1 Z=M
lmff.3 φJTopOnX
lmff.4 φM
lmcls.5 φFtJP
lmcls.7 φkZFkS
lmcld.8 φSClsdJ
Assertion lmcld φPS

Proof

Step Hyp Ref Expression
1 lmff.1 Z=M
2 lmff.3 φJTopOnX
3 lmff.4 φM
4 lmcls.5 φFtJP
5 lmcls.7 φkZFkS
6 lmcld.8 φSClsdJ
7 eqid J=J
8 7 cldss SClsdJSJ
9 6 8 syl φSJ
10 toponuni JTopOnXX=J
11 2 10 syl φX=J
12 9 11 sseqtrrd φSX
13 1 2 3 4 5 12 lmcls φPclsJS
14 cldcls SClsdJclsJS=S
15 6 14 syl φclsJS=S
16 13 15 eleqtrd φPS