Description: Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmicsym | |- ( R ~=m S -> S ~=m R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic | |- ( R ~=m S <-> ( R LMIso S ) =/= (/) ) |
|
| 2 | n0 | |- ( ( R LMIso S ) =/= (/) <-> E. f f e. ( R LMIso S ) ) |
|
| 3 | lmimcnv | |- ( f e. ( R LMIso S ) -> `' f e. ( S LMIso R ) ) |
|
| 4 | brlmici | |- ( `' f e. ( S LMIso R ) -> S ~=m R ) |
|
| 5 | 3 4 | syl | |- ( f e. ( R LMIso S ) -> S ~=m R ) |
| 6 | 5 | exlimiv | |- ( E. f f e. ( R LMIso S ) -> S ~=m R ) |
| 7 | 2 6 | sylbi | |- ( ( R LMIso S ) =/= (/) -> S ~=m R ) |
| 8 | 1 7 | sylbi | |- ( R ~=m S -> S ~=m R ) |