Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
lmicsym
Next ⟩
lmhmpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmicsym
Description:
Module isomorphism is symmetric.
(Contributed by
Stefan O'Rear
, 26-Feb-2015)
Ref
Expression
Assertion
lmicsym
⊢
R
≃
𝑚
S
→
S
≃
𝑚
R
Proof
Step
Hyp
Ref
Expression
1
brlmic
⊢
R
≃
𝑚
S
↔
R
LMIso
S
≠
∅
2
n0
⊢
R
LMIso
S
≠
∅
↔
∃
f
f
∈
R
LMIso
S
3
lmimcnv
⊢
f
∈
R
LMIso
S
→
f
-1
∈
S
LMIso
R
4
brlmici
⊢
f
-1
∈
S
LMIso
R
→
S
≃
𝑚
R
5
3
4
syl
⊢
f
∈
R
LMIso
S
→
S
≃
𝑚
R
6
5
exlimiv
⊢
∃
f
f
∈
R
LMIso
S
→
S
≃
𝑚
R
7
2
6
sylbi
⊢
R
LMIso
S
≠
∅
→
S
≃
𝑚
R
8
1
7
sylbi
⊢
R
≃
𝑚
S
→
S
≃
𝑚
R