| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismid.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | ismid.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | ismid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | ismid.1 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | lmif.m |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 7 |  | lmif.l |  |-  L = ( LineG ` G ) | 
						
							| 8 |  | lmif.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 |  | lmicl.1 |  |-  ( ph -> A e. P ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 9 | islmib |  |-  ( ph -> ( A = ( M ` A ) <-> ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) ) ) | 
						
							| 11 |  | eqcom |  |-  ( A = ( M ` A ) <-> ( M ` A ) = A ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( A = ( M ` A ) <-> ( M ` A ) = A ) ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> A = A ) | 
						
							| 14 | 13 | olcd |  |-  ( ph -> ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) | 
						
							| 15 | 14 | biantrud |  |-  ( ph -> ( ( A ( midG ` G ) A ) e. D <-> ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) ) ) | 
						
							| 16 | 1 2 3 4 5 9 9 | midid |  |-  ( ph -> ( A ( midG ` G ) A ) = A ) | 
						
							| 17 | 16 | eleq1d |  |-  ( ph -> ( ( A ( midG ` G ) A ) e. D <-> A e. D ) ) | 
						
							| 18 | 15 17 | bitr3d |  |-  ( ph -> ( ( ( A ( midG ` G ) A ) e. D /\ ( D ( perpG ` G ) ( A L A ) \/ A = A ) ) <-> A e. D ) ) | 
						
							| 19 | 10 12 18 | 3bitr3d |  |-  ( ph -> ( ( M ` A ) = A <-> A e. D ) ) |