| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismid.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | ismid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | ismid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | ismid.1 | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | lmif.m | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
						
							| 7 |  | lmif.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 8 |  | lmif.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 |  | lmicl.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 9 | islmib | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝑀 ‘ 𝐴 )  ↔  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 )  ∨  𝐴  =  𝐴 ) ) ) ) | 
						
							| 11 |  | eqcom | ⊢ ( 𝐴  =  ( 𝑀 ‘ 𝐴 )  ↔  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝑀 ‘ 𝐴 )  ↔  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  𝐴  =  𝐴 ) | 
						
							| 14 | 13 | olcd | ⊢ ( 𝜑  →  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 )  ∨  𝐴  =  𝐴 ) ) | 
						
							| 15 | 14 | biantrud | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 )  ∈  𝐷  ↔  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 )  ∨  𝐴  =  𝐴 ) ) ) ) | 
						
							| 16 | 1 2 3 4 5 9 9 | midid | ⊢ ( 𝜑  →  ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 )  =  𝐴 ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 )  ∈  𝐷  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 18 | 15 17 | bitr3d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐴 )  ∈  𝐷  ∧  ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐴 )  ∨  𝐴  =  𝐴 ) )  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 19 | 10 12 18 | 3bitr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  𝐴  ↔  𝐴  ∈  𝐷 ) ) |