Metamath Proof Explorer


Theorem lmicinv

Description: The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
lmif.l 𝐿 = ( LineG ‘ 𝐺 )
lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
lmicl.1 ( 𝜑𝐴𝑃 )
lmicinv.1 ( 𝜑𝐴𝐷 )
Assertion lmicinv ( 𝜑 → ( 𝑀𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 lmif.m 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 )
7 lmif.l 𝐿 = ( LineG ‘ 𝐺 )
8 lmif.d ( 𝜑𝐷 ∈ ran 𝐿 )
9 lmicl.1 ( 𝜑𝐴𝑃 )
10 lmicinv.1 ( 𝜑𝐴𝐷 )
11 1 2 3 4 5 6 7 8 9 lmiinv ( 𝜑 → ( ( 𝑀𝐴 ) = 𝐴𝐴𝐷 ) )
12 10 11 mpbird ( 𝜑 → ( 𝑀𝐴 ) = 𝐴 )