Metamath Proof Explorer
		
		
		
		Description:  The mirroring line is an invariant.  (Contributed by Thierry Arnoux, 8-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ismid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | ismid.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
					
						|  |  | ismid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
					
						|  |  | ismid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
					
						|  |  | ismid.1 | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
					
						|  |  | lmif.m | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
					
						|  |  | lmif.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
					
						|  |  | lmif.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
					
						|  |  | lmicl.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
					
						|  |  | lmicinv.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
				
					|  | Assertion | lmicinv | ⊢  ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismid.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | ismid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | ismid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | ismid.1 | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | lmif.m | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
						
							| 7 |  | lmif.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 8 |  | lmif.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 |  | lmicl.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | lmicinv.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | lmiinv | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  𝐴  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 12 | 10 11 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 ) |