Metamath Proof Explorer


Theorem lmicinv

Description: The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmicl.1 φAP
lmicinv.1 φAD
Assertion lmicinv φMA=A

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmicl.1 φAP
10 lmicinv.1 φAD
11 1 2 3 4 5 6 7 8 9 lmiinv φMA=AAD
12 10 11 mpbird φMA=A