Metamath Proof Explorer


Theorem lmicinv

Description: The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
lmif.m
|- M = ( ( lInvG ` G ) ` D )
lmif.l
|- L = ( LineG ` G )
lmif.d
|- ( ph -> D e. ran L )
lmicl.1
|- ( ph -> A e. P )
lmicinv.1
|- ( ph -> A e. D )
Assertion lmicinv
|- ( ph -> ( M ` A ) = A )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 lmif.m
 |-  M = ( ( lInvG ` G ) ` D )
7 lmif.l
 |-  L = ( LineG ` G )
8 lmif.d
 |-  ( ph -> D e. ran L )
9 lmicl.1
 |-  ( ph -> A e. P )
10 lmicinv.1
 |-  ( ph -> A e. D )
11 1 2 3 4 5 6 7 8 9 lmiinv
 |-  ( ph -> ( ( M ` A ) = A <-> A e. D ) )
12 10 11 mpbird
 |-  ( ph -> ( M ` A ) = A )